{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# COMPSCI 389: Homework 2\n",
"\n",
"**Assigned**: March 5, 2024. **Due**: March 12, 2024 at 2:00pm Eastern. **Note**: Submissions received after 2:00pm Eastern on March 19, 2024 will receive no credit.\n",
"\n",
"**Submitting**: Upload your submission on Gradescope as a `.pdf`. Converting to a PDF can be a complicated process, and so we encourage you to test this process well in advance of the submission deadlines. We recommend converting to HTML, opening the HTML file in a browser, and then printing or exporting to a PDF from your browser. We do not recommend directly converting to a PDF, since this requires installing xelatex. To convert to HTML in VSCode, press `ctrl+shift+p` and type `export`, and you should see an option to export to HTML.\n",
"\n",
"**Note**: Keep your `.ipynb` file, as we may request it directly (via email).\n",
"\n",
"**Note**: When converting to a PDF file, ensure that all of your code cells have been executed. The results of these executions *must* be included in your submitted PDF."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Instructions\n",
"\n",
"Complete the questions below, replacing the blue text with your own answers (your answers do not need to remain in blue). Do **not** modify the green text. Try to answer the questions without consulting your notes or any online material. If you cannot, then consult your notes, and if absolutely necessary, consult course materials (slides, notebooks) and/or Wikipedia. Do **not** use other sources or tools like ChatGPT. Complete this part of the assignment on your own (do **not** work with others).\n",
"\n",
"After you have completed all of the questions, at the bottom of this assignment you will find a link to another notebook, `Homework 2 Solutions.ipynb`. This contains the solutions, and instructions for ensuring that your answers are correct and sufficient. Make another pass through your homework assignment, replacing the green text with descriptions of what you missed for each question, and providing the fixes necessary to make your answer correct. **The solutions file may include additional instructions, which may include additional content to respond to even if you got a question correct (e.g., additional reflection).** During this second stage where you are filling in your answers, replacing the green text, you may reference the solutions, work with others, and use any tools (including ChatGPT).\n",
"\n",
"You will only submit this assignment once after replacing both the blue and green text. You do not need to submit the assignment between the first and second passes. Grading for each question will be based on whether you followed this process, and arrived at the correct answers and have sufficient discussion/text in the end. Points will be deducted if you did not make a reasonable effort to answer the question initially, if your final answer remains incorrect, of if your answers were not sufficiently clear (so, write in full sentences with proper punctuation, and conveying your arguments clearly). Other than verifying that you made a reasonable initial effort for your initial answers (blue), points will **not** be deducted due to *initial* answers being incorrect. Hence, there is no reason to break the rules to obtain correct answers initially."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Part 1: Short Answer\n",
"\n",
"Answer the following questions with at least a few sentences, and no more than roughly one page of text."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1. [10 points] What is the the difference between a parametric and a non-parametric method in machine learning?\n",
"\n",
"***Initial Answer***\n",
"\n",
"Replace this text with your answer.\n",
"\n",
"---\n",
"\n",
"***Updated Answer***\n",
"\n",
"Replace this text with your response to the solution document.\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 2. [20 points] State whether the following parametric model is a linear parametric model. Explain your answer.\n",
"\n",
"Let $g_v$ be a linear parametric model with weights $v \\in \\mathbb R^m$ and basis $\\phi$. We will create a new parametric model, $f_w$, with weights $w \\in \\mathbb R^{2m}$. Let $w=[v,v']$, i.e., let $w$ be the concatenation of two different weight vectors $v \\in \\mathbb R^m$ and $v' \\in \\mathbb R^m$. Then, let $f_w$ be defined as:\n",
"$$\n",
"f_w(x_i) = \\max\\Big \\{ g_{v}(x_i), g_{v'}(x_i)\\Big \\}.\n",
"$$\n",
"\n",
"Is this parametric model, $f_w$, a linear parametric model? Why or why not?\n",
"\n",
"**Note**: You may use any online resources (e.g., ChatGPT) to help you format equations using LaTeX.\n",
"\n",
"***Initial Answer***\n",
"\n",
"Replace this text with your answer.\n",
"\n",
"---\n",
"\n",
"***Updated Answer***\n",
"\n",
"Replace this text with your response to the solution document.\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 3. [10 points] How can you estimate the the mean squared error (MSE) of a particular parametric ML model $f_w$ given access to data, $D=(X_i,Y_i)_{i=1}^n$?\n",
"\n",
"**Note**: Here the weights $w$ have already been determined independent of the data $D$. You may write $f_w(x)$ to denote the prediction made by the model when given input $x$.\n",
"\n",
"***Initial Answer***\n",
"\n",
"Replace this text with your answer.\n",
"\n",
"---\n",
"\n",
"***Updated Answer***\n",
"\n",
"Replace this text with your response to the solution document.\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 4. [10 points] How can you estimate the mean squared error (MSE) that would result if you used a specific ML algorithm `alg` to train a model using $m$ data points? \n",
"\n",
"You may assume access to $n>m$ data points. Your answer may be short - specifying a method or approach that we have discussed and why it is appropriate.\n",
"\n",
"***Initial Answer***\n",
"\n",
"Replace this text with your answer.\n",
"\n",
"---\n",
"\n",
"***Updated Answer***\n",
"\n",
"Replace this text with your response to the solution document.\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 5. [10 points] Imagine that you have a current model for a regression problem with mean squared error (MSE) $2.0$. If we have $n=150$ data points, we train a model using $100$ and compute the sample mean squared error (MSE) on the other $50$ points, and we obtain a sample MSE of $1.2$, can we conclude that the new model is better (has lower MSE) than the current model? Why or why not?\n",
"\n",
"***Initial Answer***\n",
"\n",
"Replace this text with your answer.\n",
"\n",
"---\n",
"\n",
"***Updated Answer***\n",
"\n",
"Replace this text with your response to the solution document.\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 6. [10 points] Derive the gradient descent update equations for the following loss function.\n",
"\n",
"Let $L(w,D)=\\sum_{i=1}^n 1 + \\sin(2 \\pi (y_i - \\hat y_i - 1/4))$, where $y_i$ is the label associated with the $i^\\text{th}$ point and $\\hat y_i$ is the model's prediction of $y_i$. The code snippet below this question creates a plot of this loss function. Notice that this loss function indicates that the lass associated with an error scales with its distance from the closest integer. Errors equal to integer values result in no loss at all, while errors half way between integers result in the largest loss.\n",
"\n",
"Consider a linear parametric model:\n",
"$$\n",
"f_w(x_i) = \\frac{1}{n}\\sum_{j=1}^m w_j \\phi_j(x_i),\n",
"$$\n",
"where $\\phi(x_i) \\in \\mathbb R^m$. Derive the gradient update rule for $w_j$. Your final answer should not include any derivative or gradient symbols (work out what these derivatives/gradients are).\n",
"\n",
"**Note:** Remember that $\\frac{\\partial}{\\partial x} \\sin(f(x)) = \\cos(f(x)) \\frac{\\partial}{\\partial x} f(x)$.\n",
"\n",
"**Note:** This problem is worth 2-4 times the number of points of previous problems, and should take a correspondingly longer amount time to complete. I recommend working this out first with pencil and paper, double checking your derivatives, and then typing your answer.\n",
"\n",
"***Initial Answer***\n",
"\n",
"Replace this text with your answer.\n",
"\n",
"---\n",
"\n",
"***Updated Answer***\n",
"\n",
"Replace this text with your response to the solution document.\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGxCAYAAABBZ+3pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQgklEQVR4nO29eZxU1Zn//7m1d/W+L9BAsy+yCUowMaI2q2MgyRg1jiij+I0j+cYw0Qn5JSom8zVxjJpMSEiMiiZjdMxEzESCtK1IUBbZwiIgW3fTS/XeXdVVXfv9/VF1blXTWy331l3qeb9evLSrb506p5865zzn2Q7H8zwPgiAIgiAIBaOTuwMEQRAEQRCjQQoLQRAEQRCKhxQWgiAIgiAUDyksBEEQBEEoHlJYCIIgCIJQPKSwEARBEASheEhhIQiCIAhC8ZDCQhAEQRCE4jHI3QExCAaDaG5uRnZ2NjiOk7s7BEEQBEHEAM/zcDgcqKiogE43sg1FEwpLc3MzKisr5e4GQRAEQRAJcPnyZYwdO3bEZzShsGRnZwMIDTgnJ0fUtn0+H3bt2oVly5bBaDSK2rYS0Pr4AO2PkcanfrQ+Rq2PD9D+GKUan91uR2VlpbCPj4QmFBbmBsrJyZFEYbFarcjJydHsl1DL4wO0P0Yan/rR+hi1Pj5A+2OUenyxhHNQ0C1BEARBEIqHFBaCIAiCIBQPKSwEQRAEQSgeUlgIgiAIglA8pLAQBEEQBKF4SGEhCIIgCELxkMJCEARBEITiIYWFIAiCIAjFQwoLQRAEQRCKJy6F5amnnsI111yD7OxslJSUYM2aNTh79uyo73vzzTcxffp0WCwWzJ49Gzt27Bjwe57n8dhjj6G8vBwZGRmorq7GuXPn4hsJQRAEQRCaJS6F5cMPP8RDDz2E/fv3o6amBj6fD8uWLYPT6Rz2PR9//DHuvPNO3HfffTh69CjWrFmDNWvW4OTJk8IzTz/9NH7+859j69atOHDgADIzM7F8+XK43e7ER0YQBEEQhGaI6y6hnTt3Dvh527ZtKCkpweHDh/HFL35xyPf87Gc/w4oVK/DII48AAH74wx+ipqYGv/jFL7B161bwPI/nn38e3//+97F69WoAwKuvvorS0lJs374dd9xxRyLjIgiCIAhCQyQVw9Lb2wsAKCgoGPaZffv2obq6esBry5cvx759+wAAly5dgs1mG/BMbm4uFi1aJDxDSEdvvw/1fYDbF5C7K0QC8DyPhi4XmpxAIMjL3R0iAXyBIE63ONBJBmXV4vL6cbyxF/1+uXuibRK+rTkYDOLhhx/G5z//eVx11VXDPmez2VBaWjrgtdLSUthsNuH37LXhnrkSj8cDj8cj/Gy32wGEbpP0+XzxD2YEWHtitys3Xn8QT+08i/86cBk8DPjNZ7vxnWVTcde1lXJ3TXS0KsOmnn58908nsf9SNwAD/tj8EX60ehaumZAvd9dERavyA4C/ne/A438+jcvd/QAM2O04hKe+Mhsl2Wa5uyYqWpUhz/N4YW8dtuy+CJc3AB30OGc8g0eWT4NeN/rtw2pCKhnG017CCstDDz2EkydPYu/evYk2kTBPPfUUNm/ePOj1Xbt2wWq1SvKZNTU1krQrBzwPvHhWhxPdIQNbhp5HnyeAJ/73NI4dP4kbK7R5UteSDJ0+4JkTenR5OOg5HnoOuNjhwr0vH8Q3ZwUwLkvuHoqPluQHAOd7gV+d1sPPczDrePh4YM/5Lnz1P3fj27MDsOjl7qH4aE2GOy7r8G5jZB3tD3B48eMGHD9Xh3+aHJS5d9IgtgxdLlfMzyaksGzYsAF/+ctfsGfPHowdO3bEZ8vKytDa2jrgtdbWVpSVlQm/Z6+Vl5cPeGbevHlDtrlp0yZs3LhR+Nlut6OyshLLli1DTk5OIkMaFp/Ph5qaGixduhRGo1HUtuXi9wcacGL/GZgMOvzsH2fBXXcU582TseXDOvzlsgHrblmEmeXi/h3lRGsy5Hke639/FF2eDlTmZ+CFu+bi7wf2YntHMfZd6sbrl7Pw129+Hhkmbex4WpMfANj7fXjyZx/Bz3tRPb0YP14zA//z1/fx4kUrbA4v/tY/Fs99bY7c3RQNLcrwk7puvLvvEwDAd1dMxd3XVODp12vx+/MGfNKuw+1fnIPV8ypk7qV4SCVD5iGJhbgUFp7n8c1vfhNvvfUWdu/ejaqqqlHfs3jxYtTW1uLhhx8WXqupqcHixYsBAFVVVSgrK0Ntba2goNjtdhw4cAAPPvjgkG2azWaYzYNNpkajUbLJIGXbqaTL6cUzu0Ip499dMR3Vs8qxo/4oHq6eiktdbuw4YcMP/nwabz/0eXCctkyaWpHhB2fb8OFnHTDpdXjhnoWYVJiBswbgl3fNxz/8Yh+aevrx248bsHHpVLm7KipakR8A/GLnZ+h0ejGpOBO/uGsB9AiizAr84s55uOOFg/jLCRvWfaEKC8YPHx+oRrQiQ38giB/8+VMAwO0LK/GNJVPg8/lwdRGP3MqJ+Pn7F/Dvfz2LFXPGIMucsCNDkYgtw3jaiivo9qGHHsLvf/97vPbaa8jOzobNZoPNZkN/f7/wzNq1a7Fp0ybh529961vYuXMnfvrTn+LMmTN44okncOjQIWzYsAEAwHEcHn74YfzoRz/Cn//8Z5w4cQJr165FRUUF1qxZE0/3iBj4zZ6LcHoDmFWRg3uvmzDgd098aRYyTXocb+zF7rPt8nSQGJFgkMdP/noGAHDv5ydgelnEEpZlNuD7t8wAAPxmzwV0O72y9JEYmeaefvxuXz2A0JyzGCOWsPmVebj9mlAc2VM7zsjSP2J03jnRggvtTuRbjfjeqhkDfvfgF6tQVZSJbpcPr3xcJ08HNUpcCsuvfvUr9Pb2YsmSJSgvLxf+vfHGG8IzDQ0NaGlpEX6+7rrr8Nprr+E3v/kN5s6diz/+8Y/Yvn37gEDdRx99FN/85jfxwAMP4JprrkFfXx927twJi8UiwhAJRm+/D6/uqwMAbFw6FborgsJKsi2463PjAQC/3H0+1d0jYuCjCx04Y3Mgy2zAvyyZNOj3K64qw1VjcuD2BfHawQYZekiMxiv76uAP8vjcxAJcP6V40O8frp4Kk0GHQ/XdOHa5J/UdJEaE53n8avcFAMA/f74KudaBFgKDXodv3TwFAPDC3y5SBqaIxKWw8Dw/5L97771XeGb37t3Ytm3bgPfddtttOHv2LDweD06ePIlVq1YN+D3HcXjyySdhs9ngdrvx3nvvYepUbZmzlcCfjzXB5Q1gSkkWbppeMuQz932hCia9Dp/UdeNUc2+Ke0iMBjuZf/XqMcizmgb9nuM4/PPnQ67aVz6ug9evzcA/teLy+vGHAyFF8v4vTBzymdIcC/5hdiiej8mbUA4HL3XhjM2BTJMeaxdPGPKZW+dWYExeBnpcPrx7auhsVyJ+6C6hNOL1Ty4DAO64dtyw8SmlORZUzwwpM/9zuCllfSNGx9brxnunQwHsdy8eP+xz/zCnAkVZJrQ5PNh7nlx7SqLm01bY3X6MK7AOe2gAIvL93+PN6HVpKxVY7fzxcCOA0Dy70rrC0Os43LYwlJDyB7J0igYpLGnC6RY7TjXbYdLr8JX5Y0Z89qtXhyba28ea4AvQCV0pvHOiBUEeWDA+H5NLsod9zmTQ4R/mhLITth9tTlX3iBjYfjR0CFgzf8wgl2w08yrzMK00G15/EO9+Sid0peDy+rHjRCjk4asLRs6Q/drCSug4YP/FLlzuij11lxgeUljShL+eDC16N0wrRn7mYFdCNF+cWoyiLBM6nV58fKEzFd0jYuCd4yHl49Y55aM8CSGdsubTVjg9VH5TCXQ5vdhzrgMA8KW5I6e7chyHfwjL+Z3jLSM+S6SO98+0wekNYFyBddQCjRV5Gbi2KpTlRW4hcSCFJU14N6ywrJhVNuqzRr0OS2eGnquh050iaO7px5GGHnAcsHL26ArLvMo8jCuwot8XwJ7PyC2kBN77tBWBII+Z5TmYXDJ6Zb9bwgrLR+c7KONLIdR8GnLJrryqLKayD2y93XmS1lExIIUlDbjY3oezrQ4YdByqZ5SO/gYAy2aGnnvv0zbwvDYr36qJ2nDsysLx+SjNGT17juM4LA3LsPZMm6R9I2Kj9kxIhstmxTYHJxZnYXpZNvxBHh+S0ik7vkAQH4TnEptbo7H8qpDCcrihG212uiwqWUhhSQM+CNdUWTSxYNggsStZPKkQVpMeNrsbJ5tir0RISAOri3PjCIGaV8KCOnefbUOQLkaUFY8/gL1hd9BIwbZXcmOUDAl5+eRSF+xuPwozTZg/Lrb7uspzMzB3bC54HthNSmfSkMKSBvztXGii3DB1cM2H4bAY9fjC5CIAwJ5zNNHkxO0LCLFES6bGvtldM6EAWWYDOvq8ON5EKepycvBSF5zeAIqzzbiqIjfm9y0Jz9k95zpI6ZSZD8Pr4JJpJXFdbPjFsAz/FlZYicQhhUXjePwB7L8Y2uyGKlI1EtdPCSkse2miycondV3o9wVQkm3GjPLhs4OuxGTQCUrnR+dJhnLC5tANU4tHzA66kqvH5yPbbECX04sTpHTKCptDbF2MFbbu7j3XTkpnkpDConEO13XD7QuiKMuM6WWxb3YAcF14sztc341+L1VrlIuPzkcUznjvd7puciEA4OMLpLDIyb7woeHzYXnEilGvE2T4EclQNrqdXpxqDrnGr5sUnwznj8tDpkmPbpdPaINIDFJYNA5zJVw/pSjuzW5iUSbKcy3wBoI4VN8lRfeIGDhwKSTDz02M/yK8xRNDi+uhum54/KR0yoHd7cPJsHVk8cT4TucAsKgqJMMDF2kOysW+i53geWBqaRZKYgh6j8ao12HxJDo4iAEpLBrnYF1okWP1AOKB4zhcNym0wO6jeiyy4PL6caIxtNl9bmJ8JzsAmFyShaIsMzz+II419IjcOyIWDl7sQpAHqooyUZYb//1oi8KK6qG6LvipkKMsMLc6Ww/jha2/n9SR0pkMpLBoGI8/IFyeds2ExK6pv7YqFA1/qL5brG4RcXC4vhv+II+KXAvG5mfE/X6O4wTLzH46octCxEIWv8IJANPLcpBjMcDpDeAkuRRk4ZO60PqXyMEPiKy/n9R1UxxLEpDComFONPbC6w+iMNOEScWZCbWxYHxoov39cg9dpCcDBy+FlIxFEwvjdukx2GJ5pIGUTjk4HFb2R6uMOhx6HSdslAcukqUz1TjcPpy1hRTFheMTk+FVY3KRYdSjt9+Hc219YnYvrSCFRcMwd9DCCfkJb3aTijORbzXC4w/S7c0ywJSMBQkulNHvPdJAp7tU4/YFhDpGychwYVjpPEpuvZRztKEHQR6oLMiIO36FYdTrMH9cHoDIukzEDyksGoYtbgvHJ2bGBEIuBbbQHqqjE3oqCQR5/P1ySEm8OsZCVUMxvSwbGUY9HG4/LrTT6S6VnGruhTcQsnKOK7Am3M78yjwAwNHLNAdTzSF28EtiHQ29PzSHj5KlM2FIYdEoPM8L8Svzwpp9ojC3EC2WqeVCex/6PH5YTXpMLR397pnhMOh1mFsZKlZ2mGKRUsqR+h4AoXoqiVo5AWD22FzodRxa7R609PaL1DsiFo6G19FkLGRAZB3+e7g9In5IYdEoLb1utDs80Ou4uCprDgXb7Nhpn0gN7CQ2Z2wuDPrkpiqz0JBLIbUwJT8ZCxkAWE0GoY4SyTB18DyP4+EsvXlhK1eizB0bev+Fdifsbl+SPUtPSGHRKEyLn1aajQyTPqm2Zo8JKSxNPf3o7PMk2zUiRtjGFOu9JSMxZ2xIhicpDimlsM2OKf3JwGIgjpCVLGXUd7rQ2++DyaDD1NL4Cm9eSWGWGZUFoUw/VqqAiA9SWDTKscYeAMDcJE8FAJBtMWJiOMuI7qRJHUy5mDMm+c1uVtjK9lmrg7K9UkS304vG7pD75ioRZDgnfEKnaqmp4+/hdXRGeQ5MhuS3S2ZlOUZuoYQghUWjMA1+7tjkF8pQO3kAgOPkFkoJvkAQn9lCAbKzknTpAcDY/AzkWAzwBXica3Mk3R4xOuzun6qiTORYYrslfSRmlucAAD5tsYPnKdsrFRyXaB0lC0tikMKiQXiex+mW0ClsZkWOKG0yl8Lx8ImDkJYL7X3wBoLINhsSKhh3JRzHCd8FOqGnBqawiGFdAYAppVkw6Dj09vvQ3OsWpU1iZJhiwaxbycLm4GkbzcFEIIVFg7TaPeh2+aDjkLTflcEW3TM2Op2ngk/DSsWM8py4bvcdCRZ8/SkpLClB2OxEUljMBj0ml4SyxUiG0hN98LtqjDgHvxlhK1l9pwt9Hr8obaYTpLBoEDbJJhZnwWJMLuCWMS2codDU04/efopwlxq2IYllIQOAWWOYhYXM0angVEvo7zxLpM0OiHwfSGGRnqaefjg8fhj1HCYWJV5WIJqCTBNKc8wAIFTPJWKHFBYN8mlL5HQuFjkWI8bkhVwTZ8nKIjlMhjNFlOGsKAsLVbyVlj6PH5e7QgG3M8pEVFiEOBZSOqXmTEtonZtUnCVKwC1jhiBDWkfjhRQWDXJaUFjEcQcxWHtn6GQgKTzPRxQWES0sE4syYTbo4PQGUNfpFK1dYjCftYY2o5JsM/IzTaK1K1hYWmgOSg1b58Q8+EW3d5pkGDeksGiQ0xJYWIDQrbGh9ulkICUtvW70uHww6DghZkEMDHodppdT4G0qYFZI5koVC2ZhudxFrlmpOR2W4XSRZUgKS+KQwqIx3L4ALnWETs9iuhOAyOJLFhZpYfEJk0vEi0FizKJMoZRwVqLNLs9qElyzZ2jDkxTplM5soX1yzcYHKSwa47NWB4J8KLirJNssatszaKKlBCniVxgRhYViIKSEKfXTRIxfYcwoJ7eQ1Lh9AVwMXxQqtqV6QmHINevyBlDf5RK1ba1DCovGiI5fSeaytaGYUJgJU3iiXe6miSYVUmQIMVjgLbn1pIPnecksLABlCqWC8219CPJAvtUo+sHPoNcJVhtyC8UHKSwag21EYmYmMAx6nXBrMG140iGlhYXFxHT0edDj8orePgG0OyJ1kMSMQWLMpDgkyWGKxPSyHNEPfkBkfSaFJT5IYdEYUqQ0R8MCbymORRpcXj8awmZisX3nAJBlNqAi1wIgdIokxIcVV5xQlCl6DBIQsdqcb+9DgFyzksBkOF3kTEsGc6+TwhIfcSsse/bswa233oqKigpwHIft27eP+Py9994LjuMG/Zs1a5bwzBNPPDHo99OnT497MOkOz/NCIJ50Cks48JYsLJJwsT0UMJ1vNaIwS1xTNGNyuPrxOVJYJEFKdxAAVBZYYTLo4PUH0UiuWUkQUpolsFQD0ZlCtI7GQ9wKi9PpxNy5c7Fly5aYnv/Zz36GlpYW4d/ly5dRUFCA2267bcBzs2bNGvDc3r174+1a2tPe54Hd7YeOAyaVZEryGWyikYVFGpjVQwpXAmNKuG2ysEgDO51PK5Vms9PrOEwsCs1vkqH4hEryS2thmVIaqRzu8lKJ/lgxxPuGlStXYuXKlTE/n5ubi9zcyF0a27dvR3d3N9atWzewIwYDysrK4u0OEcWFttDpfFyBFWaD+KZoIOKmqO9ywe0LSGLyTmdSobCwtsnCIg1nW1mGkDSbHQBMKsnCGZsD59v6cPOMUsk+Jx3pdHrR5fSC44ApJdLIsCDThIJME7qcXlxsd4p2QabWSXkMy4svvojq6mqMHz9+wOvnzp1DRUUFJk6ciLvuugsNDQ2p7prquRBOw5tULN1mV5hpQm6GETwPod4LIR6pkKFgYWklc7TYBII8zrWGZCiVSwgAJoe/H+z7QogHc8uOyctAhkm6A9mk4pCVjGQYO3FbWJKhubkZf/3rX/Haa68NeH3RokXYtm0bpk2bhpaWFmzevBnXX389Tp48iezswZPe4/HA4/EIP9vtoRONz+eDzydu9UfWntjtSsFnYTfNhMKMmPubyPgmFllx9HIvPmvpxeSijPg7mmLUJMNzYSWiSkIZjs8PBd0297rR3dePLHNKl4G4UZP86jtd8PiDMBt0KM82SibDqsLQvDvX6lDF30VNMvzMFqpRNLHIGld/45ehFZ/UdeMzmx0+X0n8HU0xUskwnvY4nucTDjPnOA5vvfUW1qxZE9PzTz31FH7605+iubkZJtPw92v09PRg/PjxePbZZ3HfffcN+v0TTzyBzZs3D3r9tddeg9Vqjbn/WuNXn+pwpleHOyYGsLhUuuyB187rcKBdh5VjA1hRSVkKYhHggUcO6BHgOTx+tR8F0sTcAgC+f0gPh4/Dxtl+jJfOmJN2nOrm8JszelRYefzb3IBkn9PkBJ4+bkCGnsdT1wQgQeZt2vJWnQ67W3S4oTyIr0wISvY57zdzeLtej3mFQaybKt3nKB2Xy4Wvf/3r6O3tRU7OyHFfKTta8TyPl156CXffffeIygoA5OXlYerUqTh//vyQv9+0aRM2btwo/Gy321FZWYlly5aNOuB48fl8qKmpwdKlS2E0GkVtW2x+8ukeAG6suelzWDA+P6b3JDK+y3su4UDNORgKxmDVqjlJ9Dg1qEWGF9udCOz/CBlGHb6+eiV0uth2oUTG9wfbJ9h/qRulU+Zi1fwxyXRbctQiPwBo/bgeOHMWc6rKsGrV3JjfF+8YPb4AnjlRi/4Ah2u/eDOKRS5uJjZqkuFbvzsCtHTgpoWzsOraypjfF+8YrZ+14+3fHUW/IQerVl2XTJdTglQyZB6SWEiZwvLhhx/i/PnzQ1pMrqSvrw8XLlzA3XffPeTvzWYzzObBE9RoNEo2GaRsWwxcXj+ae90AgGnleXH3NZ7xTQ2n+l3qdCn6b3IlSpdhXXdIfpNKsmA2x3/Dbzzjm1Kag/2XunGxs1/Rf5NolC4/AKjr6gcATC7JTqivsY7RaDSissCK+k4X6rrdqChQh5lMDTK81BlKFZ9aliupDKeV5Qmfp9MboI/xgCI3YsswnrbiDrrt6+vDsWPHcOzYMQDApUuXcOzYMSFIdtOmTVi7du2g97344otYtGgRrrrqqkG/+853voMPP/wQdXV1+Pjjj/HlL38Zer0ed955Z7zdS1tYoFhhpknU6+yHYmI44O9iuxNJeBSJKxAyhCQMuGVMCVcsvkCZQqLC7p+ZWCxNWYFohMBbkqFoePwBXA4XbpwksQzH5GdQPZ04iVthOXToEObPn4/58+cDADZu3Ij58+fjscceAwC0tLQMyvDp7e3F//zP/wxrXWlsbMSdd96JadOm4Wtf+xoKCwuxf/9+FBcXx9u9tCUV2SWM8YVWGHQcXN4AbHa35J+XLlxIQUozg1KbpYEdHCamYB5Opno6olPf6UKQB7LNBsndbNH1dChTKDbidgktWbJkxFP1tm3bBr2Wm5sLl2t4DfL111+PtxvEFbDNTqqCcdEY9TqMK7DiYocTF9qcKM9VfqaQGjjfnnqFpYHq6YiGw+1DmyOUvZgKC8skprDQZicabB2dWJwpyR1CV8Lq6Vxoc+ImKu4+KnSXkEa4ED7ZpcLCAkS5hTposRQDnudTamEpzjIjx2Kgejoiwv6ORVlm5Fikj9Ng3xNWMJJInosdqV1HJ1E9nbgghUUjMLNwyiZa2JJD/nNxsNndcHoDMOg4jC+U/nTOcRyqwubo+k7a8MQg4g6SXn5ARGGx2d1wuJVf30QNRCzVqVJY6IqFeCCFRQMEgrxwukvF6RwAJhUxCwttdmLANrtxBVYY9amZlhPCCsulDgr4E4OLQhxZahSWHItRiLMgK5k4XAj/HVlsidSQhSU+SGHRAI3dLngDoeqaFXmpiSchC4u41IWtHBNStFACECw5ZGERh8hml7oU4wmFoUKZdZ2kdCYLz/O4mHILS+hzul0+dPZ5RnmaIIVFAzArx4TCzJTl8rNFubnXTbeNikB9eMOZkAJ3EKOqKLTZ0elcHC6l2CUERL4v9STDpGnv88DhCd12P74wNRXTM0x6jAkfMuvo4DAqpLBogIbwZpeqSQYA+eHbRoGIO4NInDqmdBalToZss6OFMnmCUW7ZVKQ0M5hFjiwsycOClyslvO1+KMYVhOZ8PclwVEhh0QByuBMACEGbtOElT72gdKb+dN5q95CVLElsdjf6fQEY9Rwq81OX5s8OKeTWSx5hHU3hHAQihxRSOkeHFBYNUC+DhQUAxtPJQBSCQT5qsUytlSw3I5R+SzJMjuigaUOKgqaBaCsZyS9ZIm7ZFK+jFEsWM6SwaAD2RR9fkNqTwbjwxG6gxTIpWh1uePxBGHSc4M9OFYJLgWIgkoIpnFUptnKyOdjR50Gfh6xkydDQFVY6U2xhoYNf7JDConICQR6XwxeupdzCImQo0GaXDHXhtOKx+RkpPZ0DlGUiFg3h+2fGpfjQkGMxojAcS0ZKZ3KwecgUiFRBFpbYIYVF5bT09sMbCMKo51KW0sxgizNbrInEECxkKT7ZAVEuBdrskiIiw9RudtGfSSf0xOF5XljH5Dr4dbt86O2nAoAjQQqLymHumMp8a8qvJ2enc5vdDbcvkNLP1hLMupFqd0L0Z16i011SMGVhXIpP50B0phDJMFG6nF70efzguFCWUCrJNBtQlBUqAEju9ZEhhUXl1MkUcAsABZkmZJlD99HQ9eiJw6wb8p7OabNLFJ7ncZm5hGSQ4QRyKSRNfVh+ZTkWWS4CnUDu9ZgghUXlyOlO4DiOagiIgFzplEDEwkKpzYnT6fTC6Q2A40JxSKlmPMUhJU2DjBYygOJYYoUUFpUjV0ozgxbL5OB5XlYZ5lkjqc11dKdQQjD5VeRmpLTgGIMsLMlTJ2MMUvTn0sFvZEhhUTlyns6B6NRmWiwTod3hQb8vAB0HjM2XZ7GkGIjkYOmwlQWpt64AVABQDBpkKNwYDSkssUEKi4qRM7KdIZzuKFMoIZhlakx+BkwGeaYj859TtldiCBayFKc0M3KtRuRZqQBgMtQrZB2lQ8PIkMKiYtr7PHB55T2ds5oFFN2eGHUd8lrIgFCGGQAhcJSIDyH+QabNDqAYiGSRW+lkilKbg6xkI0EKi4oRfOd58p3O2SJ9uduFQJCXpQ9qpr4rUtJdLpgr43J3v2x9UDNyWzmBiJWMLCzx4/T40dHnASCf0hkdS0aWzuEhhUXFKOF0Xp6bAaOegy/Ao7mHNrx4aQwrCamu/RANWViSo75L3gwTIJKd1EhKZ9wwJS/PahSUBjkQUpsp+H1YSGFRMWyDkXOz0+s4YcOjk0H8CDKUyaUHRL4/Td39CJKVLC5cXj/aHaHTuVzuBCBK6aR6SHHDgqZTXZL/StgdRqw/xGBIYVExl4XTuTzZCQyKcE8cJciwPNcCvY6DNxBEq8MtWz/UCFPSczOMyLXKdzpnSidZyeKnXuYMIQZZyUaHFBYVw6rLynk6B6IC/uhkEBduX0A4ncspQ4Neh4o8CwAIF2kSsSF3HSQG+/40dveD58lKFg8NCnDpAQNlSAwNKSwqhm0ucrqEADoZJApTOLPMBiEtVS4ojiUxlOCWBYDyPAt0HODxBwUlmIgNZuWUW2Fh6yjNweEhhUWlePwBwXwvRznwaMbSySAhmMI5Nj8DHJfaiyuvhC3WFIcUH5F0WHk3O6Neh/Jclu1FMowHdnCQex1lSi9ZyYaHFBaV0tzjBs8DGUY9CjNNsvaFTfQmWijjIrJQyrvZAVExECTDuBDcsjIrLABZOhOB53k0dbODg7wyrMizgOOAfl8AnU6vrH1RKqSwqJToU4Hcp3PmTujo86LfG5C1L2pCCQG3DGGzoxiWuGjqiVjJ5IYCb+Onvc8Djz8IHQeU5Vpk7YvZoEdpdqgPpHQODSksKkUp8SsAkJNhQLbZAABo6qHFMlaUkNLMIAtL/PA8L2wscp/Ogeg4JNrsYoXJryzHIlvxzWgojmVk5JcQkRBK8bsCAMdxGCNMNFosY+WygtwJLIbFZnfD4ycrWSx0u3xwhS2KLMtKTiIVi2mzixWmGChB4QQGxrEQgyGFRaUI7gTFTTRaLGMlYiWTX+kszDQhw6gHz0Pw6RMjw77rpTlmmA16mXtDVrJEECxkCpiDQJSFhWQ4JKSwqBQlWVgACviLF7vbh95+HwBlnO44jqM7heKEfdfH5CljDrLDS3OPG/5AUObeqAMlufQAqsUyGnErLHv27MGtt96KiooKcByH7du3j/j87t27wXHcoH82m23Ac1u2bMGECRNgsViwaNEiHDx4MN6upRVKimEBKLU5XpgpOt9qRFY4/kduqBZLfCgpywsASrLNMOl1CAR5tPRSxeJYUOzBj+bgkMStsDidTsydOxdbtmyJ631nz55FS0uL8K+kpET43RtvvIGNGzfi8ccfx5EjRzB37lwsX74cbW1t8XYvLXD7AsLtooqbaGTKjAklXHp4JeRSiI/I6VwZc1Cni8SS0cEhNpoUJkPBtd5D93oNRdwKy8qVK/GjH/0IX/7yl+N6X0lJCcrKyoR/Ol3ko5999lmsX78e69atw8yZM7F161ZYrVa89NJL8XYvLWBKQbbZIOvtotGQSyg+lJQhxBAWSwqcjgml1O+IhmIgYicY5NHYo6xYwLLcUMVirz+I9j6qWHwlKYthmTdvHsrLy7F06VJ89NFHwuterxeHDx9GdXV1pFM6Haqrq7Fv375UdU9VXBYCxayy12BhsEW70+mF0+OXuTfKR2nBfkAkFoPVFiFGRmkWFiBa6SSFZTTa+zzwKqQGCyO6YjFZqwcjufO8vLwcW7duxcKFC+HxePDb3/4WS5YswYEDB3D11Vejo6MDgUAApaWlA95XWlqKM2fODNmmx+OBxxPRPu12OwDA5/PB5/OJ2n/WntjtJkN9uwMAMCbXnHS/xBqf1QDkWAywu/2ob3dgSmlWUu2JiSJl2NkHAKjIUY4MS7NC1rrmnn5F/a2UKL9QDZbQhlKWbVSMDCtyzACA+k6nov5eSpRhXXgdLc+1AMEAfMHk0vnFGuOYPAuaevpxqb0Pcyqyk2pLTKSSYTztSa6wTJs2DdOmTRN+vu6663DhwgU899xz+N3vfpdQm0899RQ2b9486PVdu3bBapXGtFdTUyNJu4mwp04HQAdfbyt27NghSptijC9bp4cdHLa/9zfMylee/1VJMjx7WQ+AQ/O5k9jRcUKUNpMdX58PAAxoc3jw57/sgALqaA1ASfJz+gCnN7R8Ht//IU6L9LdKdoztHRwAPU5ebMaOHZfF6ZSIKEmGh9pDf6uMYL9o6yggwhidofX9/QPHYGw6KkqfxERsGbpcsVuSZElPuPbaa7F3714AQFFREfR6PVpbWwc809rairKysiHfv2nTJmzcuFH42W63o7KyEsuWLUNOTo6offX5fKipqcHSpUthNCojXuSvr/8daGnFF+bPwKrF45NqS8zx/aXnGJpOt6F88iysWjQuqbbERIky/MHR9wH4sbr6+qStUWKNj+d5/PDvtXD7gph73RLZL/RjKFF+J5vswKH9KM4yYfU/LEu6PbHGWNbQg1fOHYRHn4FVq76YdL/EQokyrP/wInD+PGZPGoNVq65Kuj2xxnjh/Qs4+MEFWIvHYdWqWUn3SyykkiHzkMSCLArLsWPHUF5eDgAwmUxYsGABamtrsWbNGgBAMBhEbW0tNmzYMOT7zWYzzGbzoNeNRqNkk0HKtuOFpSyOK8wSrU9ijK+yIBMA0GL3KuZvFY1SZOhw+2B3h+J8xhVnw2gUZxqKMb6KvAxcbHeirc+HyaXy/62iUYr8AMDmCF1ON7bAKmqfkh3j+KKQC8Fm90CnN0CvU0aMG0NJMmyxh8IKxhVkKkqG44pCBxib3aOYv1U0YsswnrbiXin7+vpw/vx54edLly7h2LFjKCgowLhx47Bp0yY0NTXh1VdfBQA8//zzqKqqwqxZs+B2u/Hb3/4W77//Pnbt2iW0sXHjRtxzzz1YuHAhrr32Wjz//PNwOp1Yt25dvN1LC5p6QgqLUgpWMegejNhgCmduhnJqsDDGhBUWqnY7MpFLD5VhhWIUZ5th0HHwB3m0OdxCACcxGFbLSklB00DkmodmCn4fRNyr5aFDh3DjjTcKPzPXzD333INt27ahpaUFDQ0Nwu+9Xi/+9V//FU1NTbBarZgzZw7ee++9AW3cfvvtaG9vx2OPPQabzYZ58+Zh586dgwJxiYE1WJSqsFBq88iwza5CYfIDIt+p5h4qPDYSSswQAgC9jkNZrgWN3f1o7uknhWUElKp0Rmfr8TyvmExQJRC3wrJkyRLw/PABldu2bRvw86OPPopHH3101HY3bNgwrAuIiGALn84zjHrkWZVlLmQbcEsvKSwj0SSUdFdGKmU0FYLCQjIcCaVVSI2mIi8Djd39aOpxY0FyIW6ahed5QWFR2sGPpVh7/EF0Ob0ozBoc/pCuKCwPgBiN5l52OrcoTvNmE7+jzwu3j278HY5mBVtYKqgWS0wo7R6haMaQ0jkqnU4vvP4gOA4ozVWWQmA26FGcHeoTXbEwEFJYVAYz1Stxs8uzGpFhDN1aa6OJNixKVlhos4uNiDtBeTKkGIjRaQmvo8VZyrhp+0ro4DA0pLCoDGGzU6BvmuM4lNNiOSpKVjqv9J8Tg3G4fXCEs7yUGCNCbr3RYYpAuQLnIBBxF5MMB0IKi8pQ8ukcoPLusRDxnSsvhqUs1wKOC/nPO51eubujSKKzvDIVluUFRJ/Oyco5HM0KnoNA5EBKCstASGFRGZEME2VPNPK9Dk0gyMNmZ2npyspOAACTQYeSsP+cFsuhYX+XcoXcP3MlY5nCQnfRDAtLDFCipRqItpLROhoNKSwqo1mhke0MMkePTJvDjUCQh0HHCYF1SoNkODLNCq2DxGBuDrvbD4dbOXf3KAklu2WByIGULNUDIYVFRfA8r/iJVk4TbUSYElCWa1FcFVIG+25RPZ2hEU7nCp2DWWYDcjNCJQ/I0jk0irdU06FhSEhhURE9Lh/6w+nCSrkO/UrG5JFLaCSaFK5wAlQ8bjQiAZvKnIMAZZmMhtKVTtavNocHHj+ViGCQwqIi2OJTlGWGxai8VDxg4MmAskwGo3SXHkCpzaOhDhlSlslweP1BtDlC1cKVqrAUZppgCl+X3trrkbk3yoEUFhXBrBZKjWwHIoGILm8Avf3kP78SVuVWqaZogE7no8HmoRJTmhnkUhieVrsbPB8KMC/MNMndnSHhOC5ycKDK4QKksKiISHaCchdKi1EvLAK04Q1G6WnpABUeG4lgkBeKjqlB6SS33mCE+JVc5VULj4bm4WBIYVERatjsgKg7hWixHISSLz5kjA2nW3c66YqFK+l0euENhEu65yhfYaFbtwej9PgVBtViGQwpLCpC6ZHtDOYWIlPmYNjiM1bBi2VOhgGZplCMFC2WA2F/j9JsC4x65S6fVMBxeJjVScmWaoAKAA6FcmccMQg1BPsBFAMxHA63D3ZW0l3BMuQ4jmQ4DOx0ruQMISCyRtjsobo/RAQlV5qOhoLfB0MKi4pQeg0WxhhyCQ1JdEn3LAWWdI9mTD4tlkOhhrR0ACjONsOg4xAI8mhz0DyMpkUFblmAAqeHghQWleALBNHqUMdiSRNtaNQQv8Igc/TQtEQFbCoZvY4TajXRPByIWg5+0UG3VCIiBCksKsHWq/xUPAbd2Dw0Sr9wLZoxFLQ5JM0qCdgESOkcjmbVxAKG5Of0BmDv98vcG2VACotKaI462ekUWtKdwTa7VocH/kBQ5t4oB7VkeQHkPx8OtQRsAiTDobC7fXB4wnFkCpdhhkmPAioRMQBSWFSCGopVMYqzzDDqmf+cqjQy1GKKBqLcepTpNQC1BL4DVMdjKFhcXZ7ViEyFx5EBERm20DwEQAqLalBT/INOxwk1KmixjBCpcqt8GQoLZY8bQcoyARAq6d7eF1LAlZ4lBFAtlqFQQ/HNaKgWy0BIYVEJaop/AKJP6OQ/ZzSp6HRelmOBjgO8gSA6nGQlA9RR0j0aSk0fDLMYqm0dpTikEKSwqAQ1xT8A5D+/kkCQh83O7oJSvgwNeh2Ks80AQgHfxMA4MiWXdGeMpTk4CFpH1Q0pLCpBTfEPAPnPr6TNESrgZdBxgiKgdMrC5ugWUlgAqCtDCIgUJ7S7/XC46SJSQI3rKCks0ZDCohLUdjIoJ9/rANimX5pjgV7hWV6M8nAcEllYQqgpQwgAsswGZFtCgaWtdpIhEHGPlSu8jg6DDn4DIYVFBUSn4im9dgAjYsqkhRKIbPplKlkogUhfycISQm1xZEBkYyYZhmjpVU8cGTDwigUqEUEKiypgqXi5GUZYTcpPxQMoLfZK1KiwMOXYRjIEEJVhopLNDiC3XjSBIC/MQ7VYqouyQlcsBHlQiQiQwqIKWLCmWsyYQCTts8flg8tLVRoFGeaoR4a02Q2kRWWbHUBuvWg6+jzwBXjoOKBEJXFk0SUiaB6SwqIK2AlXTafzHIsR2eHCTOR/jSw2apIhuRMG0hSVJaQWyK0Xga1DpTkWGPTq2frYPCSlkxQWVRCpcquehRKIWFlsvWTKVKPSWRZ1Ok/3y9ccbh8c7nBJdzVZWHLJrcewqXQdZWuGjQKnSWFRA0L8Q456FkoAUaZMWizVqHQy+XkDQXQ5vTL3Rl6Y/HIsBmSpoKQ7gywsEdR0vUk0pHRGIIVFBagxhgUgUyYjGOTRZg9ZmcpUtFiaDDoUZYV8/em+4akxfgWIbM50Oo+kdqvJyglQLFk0cSsse/bswa233oqKigpwHIft27eP+Pyf/vQnLF26FMXFxcjJycHixYvx7rvvDnjmiSeeAMdxA/5Nnz493q5pFrbhl6p1oqX5Ytnl8sIbCIJTUbAfg5TOEGp06QGR/va4fOj3BmTujbwIcWQqCnwHaA5GE7fC4nQ6MXfuXGzZsiWm5/fs2YOlS5dix44dOHz4MG688UbceuutOHr06IDnZs2ahZaWFuHf3r174+2aZlGjOwGI9Lc1zScaW2iKsswwqijYD4hyKaS50qnWOZhjMcBq0gMgK4saSwsA5NaLJm5n7MqVK7Fy5cqYn3/++ecH/Pz//t//w9tvv43//d//xfz58yMdMRhQVlYWb3c0T783gN7+UFltmmjqRK2bHRDJiEl3/zlzJ5Sq7HTOcRzKci242O5ES28/qooy5e6SbKjdtd5qD92crlNJpWwpSPlxLxgMwuFwoKCgYMDr586dQ0VFBSZOnIi77roLDQ0Nqe6aImGTLNOkF9KE1UI5RbcDiIxfbaZogPznDDUrneRSAHg+UjRObUpncZYZOg7wB/m0vzk95TvgM888g76+Pnzta18TXlu0aBG2bduGadOmoaWlBZs3b8b111+PkydPIjs7e1AbHo8HHk9EcHa7HQDg8/ng84l7yRdrT+x2Y6Wxsw8AUJpjht8vfgE2KcdXmBH6enU5vehzuWE26kX/jFiQW4bNXU4AQGm2SZI+SDm+4iwjAKClp1+2v5/c8gMAW7iGR3GmUXUyZHFTTV3OtJVhpzMURwYABRl61cmwOMuMVocHjZ19yLdoax2Npz2OT6LAAsdxeOutt7BmzZqYnn/ttdewfv16vP3226iurh72uZ6eHowfPx7PPvss7rvvvkG/f+KJJ7B58+Yh27darTH3Xw180s7h9+f1mJobxEMz1XWXBM8DjxzUwxfk8IP5fhSp62AjGr8/r8Mn7TrcOi6A6jHqqmdyvhf4z08NKLbw+P789A3a3PSJHi4/h3+b60eFypaYdxp02NWkwxdKg7htorrWELFodAL/cdyAbCOPHy1U3/f42RN61PdxuG9aAHMK1LWGjIbL5cLXv/519Pb2IicnZ8RnU2Zhef3113H//ffjzTffHFFZAYC8vDxMnToV58+fH/L3mzZtwsaNG4Wf7XY7KisrsWzZslEHHC8+nw81NTVYunQpjEajqG3HQsOHF4Hz5zFr4lisWnWV6O1LPb7nz+1FXacL0+Z/DouqCkZ/gwTILcPXXz4EtHfhhmvmYtW8CtHbl3J89V0u/Oene+EI6LFy5TJwXOr953LLz+0LwLWvFgDwtVuWIidD/D5IOcbeTy5jV9NpmPNLsWrV/NHfIAFyy/D9s+3A8aMYV5yDVasWS/IZUo7xnd5jqP+0DWMmz8Kqz40Tte1YkWp8zEMSCylRWP7whz/gn//5n/H666/jlltuGfX5vr4+XLhwAXffffeQvzebzTCbB6eHGo1GySaDlG2PRLszZC4bk2eV9POlGl95bgbqOl3odPll+ftFI5cMW8M1WMYUZKlOhmMLsgAAbl8QLj+QZ5VPhnLJr6k3VDTPatKjIDtDUqVNGhmGAm1bHZ60nYPtfaF1tDxX2nUUkGaMFXkhs15bn09zMoynrbiDbvv6+nDs2DEcO3YMAHDp0iUcO3ZMCJLdtGkT1q5dKzz/2muvYe3atfjpT3+KRYsWwWazwWazobe3V3jmO9/5Dj788EPU1dXh448/xpe//GXo9Xrceeed8XZPc7SotAYLI93vo+F5XrXZCQBgMepRkGkCkL4yjK7fIYeFKVlYhex0DrpVa1l+BlW7DRG3wnLo0CHMnz9fSEneuHEj5s+fj8ceewwA0NLSMiDD5ze/+Q38fj8eeughlJeXC/++9a1vCc80NjbizjvvxLRp0/C1r30NhYWF2L9/P4qLi5Mdn+oRJprKItsZZWmeoWB3++EKF+xSW1o6oyzNb/y12dVZNI7BNruOPi88fvXFb4iBTaVVbhlUIiJE3C6hJUuWjHgR2rZt2wb8vHv37lHbfP311+PtRtqgnYmWnicDtsnnW42wyJQllSzluRZ82mJP28WSXd6pxrR0IOTGMxt08PiDaLN7UFmgsqhhEbCptMotg12x0JrmJSLUVXYzzfD6g+joCy2WajVlpvvpnClqaqv9EE3k1u10VTrVbWHhOC7tXbNsHqp1HY2WXzrfnE4Ki4Jpc7jB84BJrxPiCNRGeZoXHlO77xwgGaq5aBwj3S2drcLlo+qUYUlOKMnE4w+ixyVfPSK5IYVFwUQuPTSrMtgPiCwQ7X0e+ALpVwMi4tJT1y2/0QhWsjQ1R6u1LH80wq3Naah0Otw+9HlCRTfVqrCYDXoUZaV38DtACouiEbJLctS72RVmmmDUc+B5oN2RfmWltWFhCfW9uSc9T+cRC4t652E6B22yORi6CFJd15tEIyQw2NNzHgKksCgam8pTmgFAp+OEk2k6LpZCSqyKZViWxv5zXyCI9j51uxOA9L5PKFJWQL0KJxBJT0/HdZRBCouC0YLvHEjzxVLl2QlAZKN2eQNweMS/z0rJtDs84HnAqOdQqNI4MiDy/WtJQ7ee2mtZMcpyQ3Es6biOMkhhUTBa2OwARFlY0s+UqfbsBACwmgzIDZejT7fFkm12JdkW6HTqjCMDomNY0m8Oqr2WFSPdg98BUlgUjZorpEaTrhYWl9cPu1vdwX6MdE2LbVV5HSQG63+bI/2C39Vey4qR7iUiAFJYFI0WYliASIZMupmjmfyyzAZkW+S9/yNZIhWL0+uEroUYJCC9g99tGpFheZqnpgOksCiWQJAXTndasbC0ptnJQCsLJZC+5mimoKndnZDOwe9aUTrTOfidQQqLQuns88Af5KHjgOKswTdTq4l0Tals0UgMEpC+bj2byguORZOuMtTKwS+dg98ZpLAoFOZ3Lcm2wKBXt5gEC4vdjWAwfU4GWvGdA+mrdKq9LH80gms2jVwKbl8AXU4vAPUfHNI5+J2h7p1Qw2glFQ8IWYh0HOAP8uhwpo//XAtF4xjpejrXSmkBID1lyKwrFqNO2OzVTDrKMBpSWBSKVlLxAMCg16E4O/1qCGjFdw5EVbtNo9N5MMijLewSUnNZfkY61mKJHBoyVHu9STRlpLAQSkRLmx0QbY5On4nGSmhr4XTO5Odw+4V7WbROl8sLbyAIjgu5ZtVOOp7OBbesBhROIH3LCzBIYVEoWgkUYzBLUWsanu60cDrPMhuQbQ7dw5IuGx4bZ2GmGSaD+pfKdDyda+7gFy7Pn673Cal/FmqUFg0F+wHpF7Tp8QfQ0RcK9lP7HSaMdNvwtBSDBES+h612NwJpEvyupdICAFlYSGFRKFopy89IN3M0i30wGXTIt6o/2A8AyvPSK8ukRUNZXgBQnG2GXsfBH+TR2Zcewe9aUzrT7dBwJaSwKBCe5zVzwygjYmFJj80u+loFLQT7ARG3Xroslq0aOzTodRxKwsHv6XJCZ0qnFtyyAFlYSGFRIL39Prh9ofs+SnLUXTSOkW73YGipaByjTMgUSjMZauR0DqSfa9amgctHo2FlLnr7fXB50yP4PRpSWBQIW0wKMk2wGPUy90Ycoku7p0NZaS0VHGOwsaRL4LSWsrwYEdes9i2d/kBQuDdJK/Mw22xApim0J6TL4S8aUlgUiNbiV4CIpcjjD6LH5ZO5N9JDp3P1o8V5yLJM0kGG7X0eBHnAoONQlKkNSzXHcWkdx0IKiwKxaSylGQAsRj0KM00AIuPTMkJauoY2u/I0srDwPK9JpVOwsKSBDIVq4TkW6HTaiCMD0vciUoAUFkWixYUSSK8I94gMtRE0DQDl4dN5l9MLty8gc2+kxeHxw+UNjVFL87A0jaxkrVpfR9NA6bwSUlgUiBD/oKHTOZBeEe5aS6cEgJwMAyzG0JKhdSsL2+xyLAZYTQaZeyMe6VReQIuB70D0Oqr9OKQrIYVFgWjVwlIqZAppe6L5A0G0aSzYDwj5z9PFHB259FA7FjIgKlvPrv3gdy3dlh5NxFKdHrV0oiGFRYG0aqwGCyNdLCwdfV4Egjz0Og5FWdoI9mOkS3o62+y0cFt6NOzQ4PUH0a3x4HctWjmBaKVT2we/oSCFRYFELCwa2+xy2T0YabLZhSuLaol0CdrU0m3p0ZgMOhRlhYLfte5S0NJdXtGkUyzglZDCojD6PH443KGCQFoK2ATSx3+uxRosjHRZLLXqlgXSp55Oiwbr6AARy3tHnxdef1Dm3qQWUlgUBtsIss0GZJm1E+wHpN9mpzWXHpA+Vyy0ajT+AYi4FLTsmuV5Hq292osjA4B8q1G4PVzrSueVkMKiMNJhoXR4/HC4tes/16opGkifGJZ0sLBoWYZdTi+8gSA4DijJ1pYMOY4bEDydTsStsOzZswe33norKioqwHEctm/fPup7du/ejauvvhpmsxmTJ0/Gtm3bBj2zZcsWTJgwARaLBYsWLcLBgwfj7Zom0PJCmWk2INsSshpp+WTQotFgPyBiNdL6QqnV0gJAlAw1rLCwOViYaRasEVoi3apOM+KWpNPpxNy5c7Fly5aYnr906RJuueUW3HjjjTh27Bgefvhh3H///Xj33XeFZ9544w1s3LgRjz/+OI4cOYK5c+di+fLlaGtri7d7qkfLCyUQHcei3ZQ8raZTApExtTk88AW06T93+wJCBo0Wlc7SNDidt2qwWng0QtXpNFNY4g6SWLlyJVauXBnz81u3bkVVVRV++tOfAgBmzJiBvXv34rnnnsPy5csBAM8++yzWr1+PdevWCe9555138NJLL+G73/1uvF1UNVo+nQOhQOLPWvs0HQOh1XRKACjMNMGo5+AL8Gh3eFCRp704HbbZWYw65GYYZe6N+KRDeQEtW6qB9IhDGgrJbWX79u1DdXX1gNeWL1+Offv2AQC8Xi8OHz484BmdTofq6mrhmXQiEsOivY0AAMrClyBq1RzN83zk0jwNLpY6HSfEBGh1sYyukMpx2kpLB6KyhDQqP0CbF1dGEynPr92D31BInoZis9lQWlo64LXS0lLY7Xb09/eju7sbgUBgyGfOnDkzZJsejwceT8SlYLfbAQA+nw8+n7jBnKw9sdsdjuae0BewKNOQks9M9fhKwjUgmnpcKfvMVI6xMxzsBwD5Fr0mZViWY0ZTTz+auvowpyJL8s9L9fiaupwAgNIcsya/o4UZegCh4Pfuvv6UZCOmfh11AQBKsoyalGFxZsjy19LTr/rxxdOeKvNmn3rqKWzevHnQ67t27YLVapXkM2tqaiRp90oa2vUAOJw//gn6L6TkIwGkbnztrRwAPU6cb8COHXUp+UxGKsbY6AQAA7KNPN7btVPyz4smVTIMOnUAdPjgwFHwDakr756q8X3YFPqOBhyd2LFjR0o+k5GqMWbo9egPcHjzL7tQmkJjbqrGd/Ji6DvaWncWO5xDH3ylIhVjrHcAgAGXWntU/x11uVwxPyu5wlJWVobW1tYBr7W2tiInJwcZGRnQ6/XQ6/VDPlNWVjZkm5s2bcLGjRuFn+12OyorK7Fs2TLk5OSI2n+fz4eamhosXboURqO0/myPP4hv7XsPAPCPt1Qj32qS9POA1I4PADI/a8cbF48iaM7FqlWLJf88ILVjfP9sO3D8KMYX52LVqs9J+lmMVMvw79xZHP24HgVjJmLVimmSf16qx3f4nTNAQwOunjERq5ZNlfzzgNSP8RcXPsK5NiemzluEz08qlPzzUj2+n537CIATy66/FosnSj8+ILVjtNndePbkHjj8OixfsSwlFbWlGh/zkMSC5ArL4sWLB2mANTU1WLw4tFmZTCYsWLAAtbW1WLNmDQAgGAyitrYWGzZsGLJNs9kMs3lw2Xqj0SjZF0XKthk2R0jTNBt0KM6xptR/norxAcCYgpALodXhScnnRZOKMbb3hbNL8jI0OT4AqMgPWTFbHd6UjjFV42tzeAEAY/IzNSvDstwMnGtzor3Pp0kZsljAsQVZmpRhRb4Beh2HQJBHryeY0ppPYo8vnrbiDrrt6+vDsWPHcOzYMQChtOVjx46hoaEBQMj6sXbtWuH5b3zjG7h48SIeffRRnDlzBr/85S/x3//93/j2t78tPLNx40a88MILeOWVV3D69Gk8+OCDcDqdQtZQuhAd2a7FYD8gkqHQ5fTC7QvI3Bvx0XKGEIPV8dBqLZ0WdheURgM2gai0WA3K0OH2wekNrS1aDHwHAL2OQ0m2thMYhiJuC8uhQ4dw4403Cj8z18w999yDbdu2oaWlRVBeAKCqqgrvvPMOvv3tb+NnP/sZxo4di9/+9rdCSjMA3H777Whvb8djjz0Gm82GefPmYefOnYMCcbVOi8ZrsABAboYRFqMObl8QrXY3xhdmyt0lUWnRcJVbhtaLVrWmgdLJshC1KEO2gedYDLCaVBmmGROlORa09LrR0uvG3Eq5e5Ma4pbmkiVLwPPDB9oNVcV2yZIlOHr06IjtbtiwYVgXULqg9WJHQKisdHluBi51OGHr1Z7CYtPohWvRRF+eFwzy0GnoRmp/IIg2h/bnoZavWNDyXV7RlOdacOxypNhoOqC9msUqJuIS0vZE0/I9GFquwcIoyTaD4wBfgEen0yt3d0Slvc+DIB8yuRdmDY6T0wpCxWktzkENV5qOJlKLRbtVw6+EFBYFESl2pN2FEtCuS4Hn+QFFx7SKUa9DcZY2/efCxZXZ5pRkXshFqYYtLFovGseIWMnIwkLIQNpYWDR6W6zD44crHOyXDuZoQHsndEFh0fjpnMmv0+mFx6+t4Hetl+VnaPXgNxKksCiI1jQxZZZrVGFh48nNMCLDpJe5N9JSqtHTndbv8mLkWY0wh28xbtOYSyEdYgGB9Lk5PRpSWBRCKNgvtHBUaHyiCRd3aWyipctmB2j3Aj3h0JCjbQsZx3GaPaG3pJmVzNbrHjERRkuQwqIQOvq8CAR5GDQe7AdEu4S0dTpvTRNTNBBxW2rNShZxJ2h7DgLRN/5qax6ydUXrB4eScKyjxx9Ejys19wnJDSksCoEtGiUaD/YDIht6u8MDf/iiQC2QjhYWrZmjbRq/LT0aLRaPc/sC6A5v3loPujUb9CjMDF3fojUr2XCQwqIQ0iEdllGUaYZBxyHIh9JItQKrwaJ1dwKg3cDpdKhUzCjVoEuIKV8ZRj1yM1Jbkl8OyjSodI4EKSwKIV2KHQGATscJQZtaWizT052gHf85z/MRC4vGT+cAUK7B1OZoK6dWrzeJpkyD6+hIkMKiENKl2BFDiyd0W5qkpQMR+fX7ArD3+2XujTh0Ob3w+kMuyhKN10ICouKQNHQ6TydLNaDdeMDhIIVFIaSTKRrQZg0BW5qkUwKAxahHvjVkctfKhse+i0VZJpgN2k5LB7R5aEiXGiwMrWbrDQcpLAoh3U4G5Rqr49HvDQiR+ukiw8gFetqQYdrNwfA42xweBILacOulS4YQQ4tWspEghUUhtKTBpXnRaO0eDLZgZJr0yDZr94bYaNgVElo5obekSQ0WRlFWKCMxEOTRoZHg93SpFs7Q8iWWQ0EKiwIIBnm09oYWjLSZaBrzvTIrQ2maBPsB0RYWbSyW7LtYkZcehwa9jkNJdkjp1IwMmVs2DYKmAW269UaCFBYF0OXywhsIguMgLCBaR2u+13SLQQK0d8VCusU/AFo8OKSXDNk4HR4/+jzaCH4fCVJYFIBNCPYzw6hPD5Gw03mr3Y2gBvzntjRzJwDRbj1tKCykdKobrz8ouLbSRYZZZoPggtaCDEcjPXZHhZNOFVIZJdlmcBzgC/Docnnl7k7SpONmpzX/uRB0m0ZKZ6mG7vVqc7jB84BJr0NBuAJsOpBObiFSWBQAM8emQ7EqhlGvQ3GWdoI2080UDUS79dTvTuB5Pi0PDlqysERneaVLHBkQXSJC/fNwNEhhUQDpuFAC2qrFEjmdp48Mmfzsbj9cXnX7z+39fvT7AgDSS+nU0iWW6XhoALR5J9RwkMKiANLpwrVoyjRUiyUdF8tsixFZGvGfs7IC+VYjLEbtF41jCHNQA5tdOrplgfQqz08KiwJI14mmlRt/vf4gOp3pFezHKNVILZZ0q9/BiM7WU/udUOl4aAC0ZSUbDVJYFEC6VdhkaKWOR7oG+wGRyzrVLsN0PTSwO5O8/qBQqVmtRG5LTy8ZauXgFwuksMhMugb7AZFbjdV+MkjXYD9AO6nN6Xo6Nxv0KAwr2WpXOtN1HS3VWLbeSJDCIjPRwX6laXYyYOmjap9oLWkYcMvQSpaJcAdNGsowonSqO5YsnW5Lj4bNwU6nFx5/QObeSAspLDKTrsF+gHb85+nq0gO0k+mVrhYWIFrpVO99Qv5AEG2O9Iwjy7MaYTaEtvI2jdzNNhyksMhMugb7AZHNod8XgN2t3rRY4f6SNFsogegsE3WfziPuhPSbh6UayNbr6PMiEOSh13EoykqP600YHMdp5uAwGqSwyEy6BvsBgMWoR57VCEDdLgWysKhbfkDUPEyTiw+j0cK9XsLlo9mhG6jTjUhqs3qVzlgghUVm0tkUDWhjorG+p6PSySwSHX1eeP1BmXuTGA63T7g4Lh3jkIS0WBUHTqfzoQHQTizZaJDCIjOt7GSXhgsloI2JxvqebkHTQCj2yhT2n6u10iaTX47FgMxwIbx0Qgt3QqWzSw/QhtIZC6SwyEyLPb1PBmqfaIEgj1Yh2C/9FkuO41RfLZU2O/UrLLZ0X0c1UsBxNEhhkRkhnTJdF0uVn+46+jxCsF9xdnoF+zHUHvCX7u4ENm6Hxy+4xtRGutZgYWilCOdoJKSwbNmyBRMmTIDFYsGiRYtw8ODBYZ9dsmQJOI4b9O+WW24Rnrn33nsH/X7FihWJdE11RGJY0nOzU3vAH9vsStI02A+IduupMw4p3Te7LLMB2Sq/E0q48T5NZZguFyDGrbC88cYb2LhxIx5//HEcOXIEc+fOxfLly9HW1jbk83/605/Q0tIi/Dt58iT0ej1uu+22Ac+tWLFiwHN/+MMfEhuRiujz+OEIp/OmY1ozoH5zdLoHTQPRMlRnDQihpDvJUPXzMF2VTia/NocH/oA6g99jIW6F5dlnn8X69euxbt06zJw5E1u3boXVasVLL7005PMFBQUoKysT/tXU1MBqtQ5SWMxm84Dn8vPzExuRimCLQ7bZINx6m26o/R4M4WSXhgG3DLXXYkn3zQ5Q9xULwSAvWBbS9eBXlBWy8AaCPDr6vHJ3RzLiUli8Xi8OHz6M6urqSAM6Haqrq7Fv376Y2njxxRdxxx13IDMzc8Dru3fvRklJCaZNm4YHH3wQnZ2d8XRNlaS77xyIjL233weXV33+83QPmga049ZL180OiI4lU5/S2eXywhfgwXEh12w6otdxKA2PXc0lIkYjrmN9R0cHAoEASktLB7xeWlqKM2fOjPr+gwcP4uTJk3jxxRcHvL5ixQp85StfQVVVFS5cuIDvfe97WLlyJfbt2we9fnC5eo/HA48nYn622+0AAJ/PB59P3BtHWXtitwsAjV19AIDSHLMk7ceClOOLBYseyDTp4fQG0NjZh6qizNHfFCdSjrG52wUAKMkypa0MizJDxf9aevol6YPU42MLfLHVkLYyLMkOXYDY1O1SnQwbO0PraHGWGQgG4AvKc5+O3DIszTGjudeNpi4nrirPEr19qcYXT3sp9UO8+OKLmD17Nq699toBr99xxx3C/8+ePRtz5szBpEmTsHv3btx8882D2nnqqaewefPmQa/v2rULVqtV/I4DqKmpEb3NvzVyAPTw9bZjx44dorcfD1KML1ay9Ho4weHtmj2YmivdnUJSjPF0nR4AB9vF09hh/1T09uNBLhn2egHAgDa7G395Zwekij2WYnyeANDbH1oGjx/Yg3Mye2blkmFHa2gtOnG+ATt21En2OVKM70RXqO+WoFv2dRSQT4a8UwdAh/f3H0GgXj3rqMvlivnZuKZnUVER9Ho9WltbB7ze2tqKsrKyEd/rdDrx+uuv48knnxz1cyZOnIiioiKcP39+SIVl06ZN2Lhxo/Cz3W5HZWUlli1bhpycnBhHExs+nw81NTVYunQpjEajqG3v//OnwOVGXDNrMlbdPFnUtmNFyvHFyhtth9B6oQvjp8/FqvkVorcv5Rh/evZvAPqx4obPYeF4eeKu5JZhIMhj89H3EAgC11x/k+gF9KQc36UOJ3DwI2Sa9PjKrUvBcfJkesktw4yz7Xjj4lEELblYtWqx6O1LOb7uAw3A2TOYNq4Uq1bNE7XteJBbhkdxBsf2NaBg7CSsWj5V9PalGh/zkMRCXAqLyWTCggULUFtbizVr1gAAgsEgamtrsWHDhhHf++abb8Lj8eCf/umfRv2cxsZGdHZ2ory8fMjfm81mmM2DfZVGo1GyL4oUbbc5QsFRYwoyZVMWGFL+7UajIs8KoAvtTp+kfRB7jDzPwxa+HXVsQVbaytCIUOxAS68bHa4AxhaqZw52OENxU+V5GTCZTKK2nQhyyXBsQciF0Gr3qGoOAkBbX8ilMCbfKvscBOST4Zj8kDu9vc+rKhnG01bcWUIbN27ECy+8gFdeeQWnT5/Ggw8+CKfTiXXr1gEA1q5di02bNg1634svvog1a9agsLBwwOt9fX145JFHsH//ftTV1aG2tharV6/G5MmTsXz58ni7pyqElNg0zjAB1Fs8rtvlE+7PKclJz2A/RplKa7FQhlAINv5OpxcevzwxIIlCyQshSlUe/B4LcXtsb7/9drS3t+Oxxx6DzWbDvHnzsHPnTiEQt6GhATrdQD3o7Nmz2Lt3L3bt2jWoPb1ej+PHj+OVV15BT08PKioqsGzZMvzwhz8c0oqiJdK9nDRDrZVSWbBmUZYJZsPg4PB0ojzXgqNQn9LZQmnpAIC88J1QXn8QbXYPKgukiQWUAlI6Q2jhXrbRSCjEbMOGDcO6gHbv3j3otWnTpoHnhw4CysjIwLvvvptIN1SN2xdAlzPkEqKJps46Hq2kcAqwuJUWldXxoM0uBMdxKM+1oL7ThZZet6oUFuHgl+ZKZ/SdXjzPyxaPJSV0l5BMsM3OYtQhN0N+v6ucqLVSanMPLZQMtZ7uqAZLBPY9VlMdD57nhf6m631sDHZo8PqD6HbJk1otNaSwyET0DbFa1ITjgS2UHX0eISZEDbCFsiIvvRdKQL2Xr5GFJQL7HqtJhr39Prh9FEcGACaDDkVZocBxNSmd8UAKi0zYKOBWoCDTBJM+9FVU0+VdLT0RpTPdUa2Fhdx6AkLF4h71bHZMuSrMNMFiTO84MkD9d0KNBiksMkEnuwgcx6nyLpOmHmZhIRle6T9XAxRHNhBmYWnqUc8cpAyhgZTlhGTYTAoLISbNPeROiEaNJ4NmcgkJqNF/TnFkA2GKd7MKLSykcIYYk6c+K1k8kMIiE6SwDCRygZ46JlowyAvKFclQnf5ziiMbSCSGRR3yAyJ9Fbu6slphMlST0hkPpLDIBLkTBsLiQJpVYo7u6PPAF+Ch4yDckpruqM1KRnFkA2GbXbfLh36vOorHsfWCDg0hyvPUtY7GCyksMkEWloGMUZk5mvmIS3MsMOhpGgER/7la4pDInTCQHIsRWeZQaa5mlVhZ2HoxhtZRAJF1tEkl62i80EorA30eP+zu8B0mtFgCiDJlqmyhJIUzAvsuq0XpFKrc0hwUUFscC8WRDYT9HVrtbgSC6gh+jwdSWGSABUTlWAzItlCwHxDte1XH6Zwt6KRwRhBiIFQmwzH5tNkxmGtWDTIMBnmhn+RaD1GSbYFex8Ef5NHuUFchzlgghUUGmuh0Pgj2t+hyelXhP2eKFZmiI7BNo1Elp/Mmin8YRCS1Wfky7HB64A0EQ3FkFIcEANDrOCEmSw0yjBdSWGSANrvB5FgMqvKfk4VlMGPz1ZWh0NTtAkDzMJoKFbn12DpammOBkeLIBNTm1osHkrIMUPzDYDiOU9VEI9/5YNjfwtarfP+5w+0T4shIhhHUVJ6f1tGh0XJqMyksMsA2u3Lyuw5ATRON0ikHoyb/OduQczMimTGE2uYgKSxDoSalM15IYZEBSsUbGrWUBvf4A+joC23ItFhGGOg/d8ncm5GhOLKhEaycvf2Kv2KBalkNjZrikOKFFBYZoNP50IxRyemOFRyzGHXIt1KWVzQs40bpSmfk0ECbXTQsxdvtU/4VC3TwGxq11bSKB1JYUkwwyAv1H0hhGYhaYliEkx2VdB+EWpTOpm7a7IbCbNCjKCtUuVnpMhQOfnRb+gAiVcOVLb9EIIUlxVBJ9+GpUMlEIwvZ8KhF6aT4h+FRywmdZDg0arxiIVZIYUkxVNJ9eCLVbt0IKjjLpIV858OilqBNUjqHRw0ydPsC6HR6AZCV7ErUViIiHmjHTDF0KhieslwLOA7w+oPCYqREhCwvMkUPgm0ejd3KXigp6HZ4hGq3Cs4yYetopkmPnAzK8opGbSUi4oEUlhRDCsvwGPU6lGYrf6JR4b/hUUMMSyDICxc0kgwHU6GCC/SiLWQURzYYNVjJEoEUlhRDqXgjo4aTgVDllmQ4CHa9vd3th8OtzCwTdjGcUc+hhOLIBqGGOh508BsZZiVTerZevJDCkmIoFW9klF5DgOd5WixHIMtsQG5GKNVbqRsek19ZrgU6HZ3Or0QNp3Ny6Y2MWgKn44UUlhTDFnFKxRuaiEtBmZud3e2HMxx5TzIcGibDJoXGsUSnpRODYVbOVrsb/kBQ5t4MDdXRGZmIlUyZczBRSGFJMeROGBmln+5Yv/KtRmSY9DL3Rpko3UpGMUgjU5RphlHPIcgDrQq9YoHu8hqZCoUf/BKFFJYU4vYF0NFHqXgjEUltVuZmR0X/Rkfp5mhy6Y2MTscpvvgYpaWPTEVu5NCg9CsW4oEUlhTC3EFWk17w8xMDUXrQLQtio5Tm4VG6lYxZftg1AsRgynOVOw95no/IkBSWISnNNauiRES8kMKSQqJPdpSKNzRsAero88LtU16VRvKdj47yXUJkYRkNJceSdTq98PqD4LhQAU5iMGaDHsUquWIhHkhhSSG0UI5OboYR1nBsiBKzTFpIhqPCLBdK3OyAKAsLKZ3DouSgTbaOlmSbYTLQFjYcWoxjIWmnkEiwHy2UwxGq0qhclwKTYTkpLMPCTuc2BWaZ2N0+ONx+AOTWGwmWFKDETC86+MWGGoo4xgspLClEyBCihXJElOxSoNP56BRnhbJMAkEebQrLMmkJK5x5ViMyzVTSfTjGKHoOUsBtLCg5DilRElJYtmzZggkTJsBisWDRokU4ePDgsM9u27YNHMcN+GexDFzseZ7HY489hvLycmRkZKC6uhrnzp1LpGuKhlLxYkOpWSa+QFAwkVfmW2XujXLR6TiUKXSxbOpxAaBgzdEYG/5+N3UrL8uEim/GhtIzLhMhboXljTfewMaNG/H444/jyJEjmDt3LpYvX462trZh35OTk4OWlhbhX319/YDfP/300/j5z3+OrVu34sCBA8jMzMTy5cvhdmvH9wZEzKtUln9kKhSaUmnrdSPIAyaDDkVZVNJ9JJR6QqfTeWyMDcchOTx+2Pv9MvdmIIJLKJfW0ZEQLNUKdOslStwKy7PPPov169dj3bp1mDlzJrZu3Qqr1YqXXnpp2PdwHIeysjLhX2lpqfA7nufx/PPP4/vf/z5Wr16NOXPm4NVXX0VzczO2b9+e0KCUSDDIo7GHTuexoNRgscvdodP52LwMKuk+Ckp169HpPDYsRr2glLPvvVKgGJbYYEqn0m9Oj4e4FBav14vDhw+juro60oBOh+rqauzbt2/Y9/X19WH8+PGorKzE6tWrcerUKeF3ly5dgs1mG9Bmbm4uFi1aNGKbaqOjzwOvPwi9jhN8i8TQKHWzYxOf6neMjlID/iKbHc3B0VDqhkf3CMVGZUHoYNzp9MLlVZaVLFHiijrr6OhAIBAYYCEBgNLSUpw5c2bI90ybNg0vvfQS5syZg97eXjzzzDO47rrrcOrUKYwdOxY2m01o48o22e+uxOPxwOOJBPPZ7XYAgM/ng88n7g2xrL1k273U7gAAlOWYwQcD8AWVUWNErPGJSWl26GvZ2O2Cx+NN2poh1hgbOvoAhEzRSvp7KVOGJgBAY5cr6X6JOb6msLWgLNukqL+XEmU4JteCY5eBhs4+xciw3xupFl6aZVTU30tpMrQagGyLAQ63H3VtDkwpzUqqPanGF097kofJL168GIsXLxZ+vu666zBjxgz8+te/xg9/+MOE2nzqqaewefPmQa/v2rULVqs07paampqk3n+onQOgR0awHzt27BCnUyKS7PjEJMADOujhCwCvv/1X5IkULpLsGA+c1wHQwdlWjx076kTpk5goSYZNPaHv+9nL7aJ938UY3/kWPQAOl04dwY6G5PskNkqSobsr9H3fe/Q0SntOjfp8LCQ7PpsLAAyw6Hl89EENlFh/U0kyzNHp4QCH7e/9DbPyxQmeFnt8LlfsLse4FJaioiLo9Xq0trYOeL21tRVlZWUxtWE0GjF//nycP38eAIT3tba2ory8fECb8+bNG7KNTZs2YePGjcLPdrsdlZWVWLZsGXJycuIZ0qj4fD7U1NRg6dKlMBoTL6df/+FF4Px5zJk0BqtWXSViD5NDrPGJzbNn9qCxx42pVy/GwvH5SbUl1hh//+InQHs3blo0D6vmlI/+hhShRBlOb3fiV6c/gj1gwMqVy5Kq7CzW+HyBIL69/z0AwG2rbkZxtnICp5Uow56Dl1HbfBrGvFKsWjU/qbbEGt8HZ9uBvx/FhOIc3HLL4tHfkEKUKMO/9BxD0+k2lE+ehVWLxiXVllTjYx6SWIhLYTGZTFiwYAFqa2uxZs0aAEAwGERtbS02bNgQUxuBQAAnTpzAqlWrAABVVVUoKytDbW2toKDY7XYcOHAADz744JBtmM1mmM2DFxuj0SjZFyXZtpt7Qy6scYWZivkyRyPl3y4RxhZY0djjhs3hFa1fScswHAQ8vihbUX8rhpJkOL44GwDg9AbQ5wMKMpPvV9LyszsR5AGLUYfy/ExFXo+hKBkWhVwITT1uxcxBmyPkDqossCrm73QlSpJhZUEmgND+oxQZDtVerMSdJbRx40a88MILeOWVV3D69Gk8+OCDcDqdWLduHQBg7dq12LRpk/D8k08+iV27duHixYs4cuQI/umf/gn19fW4//77AYQyiB5++GH86Ec/wp///GecOHECa9euRUVFhaAUaQEWuEYZQrHB/k6Xu5QR8DewBgsF+42GxahHaU44y6RLGVkm7Ls0Nt+qSGVFabBaLI0KqsXCvku0jsZGZYEyA6cTJe4Ylttvvx3t7e147LHHYLPZMG/ePOzcuVMImm1oaIBOF9GDuru7sX79ethsNuTn52PBggX4+OOPMXPmTOGZRx99FE6nEw888AB6enrwhS98ATt37hxUYE7NNLKUWNrsYoJFuCtls6MaLPFTmW9Fq92Dy90uzK3Mk7s7QnouKZyxwdaqPo8fvf0+5FlNMvcoonSyjZgYmWilUwskFHS7YcOGYV1Au3fvHvDzc889h+eee27E9jiOw5NPPoknn3wyke4onkAwch362AI6GcSC0lIqqQZL/FQWWHGovlsxVjLhdE5zMCZYLZaOPg8au/sVobA09rCDH8kwFtg6qrRaOolCdwmlgDaHG74AD4OOQxldhx4TgoVFIRONarDET6XCFsvL5JaNm8jBQSEyJAtLXDD59bh8cLiVkW6dDKSwpIDG7kihIz2dzmOCbSotvcq48ZfJkE52sTNWYW69iIWFNrtYUZKl0+72obc/tOmS0hkb2RYj8qyhoFalFeJMBFJYUgBbKCl+JXZKss0w6XUIBHm09Mpfop9ikOKnUmH+84gMabOLFSXFQDSGrSsFmSa6aTsOBLeQQlyzyUAKSwqgDKH40ek4wf2iBJdCxMJCCkusMEtGU3c/gkF5s0xcXr9QIZViWGJHSS6hy3RoSIjIwUF+GSYLKSwpgE7niSEslgo4GTSRSyhuynMzYNBx8AaCaHXIayVjCmeOxYDcDGXUyFADSnIJUUpzYihJhslCCksKEOo/kO88LthJWO6TAdVgSQy9jhMuqJPbHE0ZQokxNj8ShyR3LRbByknraFxEy1DtkMKSAlgqHp0M4iOSkifvZtfc048gD5ipBkvcMLeQ3Islnc4Tg81BpzeAbpe8WSYUg5QYWioeRwqLxPgDQbSES7rTRIuPSoWcDOo7Q58/rsBKNVjiRJChzFYyIaWZTudxYTHqhVIM9Z1OWfsipDSTlTMuxlIMCxErLb1u+IM8THodShR02ZoaiLiE5D0Z1IcVpvGFpHDGS6RiMbmE1Mq48Pe+QcaDA8/zwoZLMowPZiWzu/3oldlKliyksEhMQ1TtBzqdxwebaK0ONzz+gGz9aAifLMeFLxIjYkcplTapaFzijA8rCMzSKAfdLh+c3tAaMCaPLCzxYDUZhJvJ67vktZIlCyksElMX3uwmFNJmFy+FmSZYTXrwvLxWFrZQk4UlfgQrmdyncyoalzDsey+nwsIOfiXZZliMetn6oVYmhGVYJ6MMxYAUFolpYPEPtNnFDcdxGBfe8BoUsFiSDONHqFhsd8Prl6dicW+/Dw6PHwDFkSXCuPBhq0HG03k9HfySglmHG2SOQ0oWUlgkhllYxpPfNSHYAlUn00TjeV5QWEiG8VOUZUKGkVnJ5FE6mfyK6XSeEEpwCZGVMznGk4WFiAVhohXRySARxhfJu1i293ng8gag4+h0nggcx0VcCjK5hdgiXUWn84Rg8mtzeNDvlSeWTHCt0zqaEEyGclqqxYAUFgmh03nyyG1hYRO8PDcDJgNNl0QQZNghjwzZ59LpPDHyrCbkWEJ398iVKUQWluQYL/M6Kha0AksInc6TR+6AP1ook0duKxmdzpOHbXhy1WKhGJbkmKAAK5kYkMIiIex0XpFHp/NEYQvU5S4X/IHUB21SDZbkqZL5dMcUJdrsEkfOWiwOt0+4uJIC3xNDCVYyMaBdVELqaKFMmrIcC0wGHfxBHs09qb9Aj2qwJM94cgmpHjkDb9lnFmaakGOhiysThVkY1ewWIoVFQoTNjhbKhNHpIqnNckw0srAkT1V4oWzs7ocvxVYyu9uHTmfodE4uocSRM3Ca3LLioIQSEclCCouERCwsNNGSYYKMi2VD1D1CRGKEin2FrGRNKS4AWN8Rkl9RlhlZZkNKP1tLyFnHg1VnJUt1csidwCAGpLBICNtgyZ2QHELAX4pdCn0ev3A6p9Nd4uh0HMYXyLNYRipNk/ySgX3/G7v7Ux5LxpTO8aSwJIUS7oRKFlJYJIRFttNmlxxylZVm8ivINCGbfOdJMUGmTKF6yhAShehYspbe1MaSRbK8aB1NhvEyutbFghQWieh1+dATvhmTFJbkkCulsp7cQaLBzNGXUmwlu9RBblkx0Ok4VIYvskz1hheJYSGlMxmY0t7U3S/bNRnJQgqLRDC/a3G2GVYT+c6TgW129V0uBIN8yj73YnsfAGAinc6TRj6lk1k5SYbJUlWUBQC42J46GfZ7A7DZQxYdUjqTg8WSBXmgqUe+y2STgRQWiWDuC6pwmzwVeRYYdBy8/qCweKUCtjBPLKbNLlmYOT/Vbj1mDagipTNpJoXnAVPkUwGLt8jNMCLPakrZ52oRjpMvlkwsSGGRCDapJxVnydwT9WPQ61Apg//1Qth9QTJMHjkKAEYXHCO3bPIwxf1iCt16FDQtLoIMU2glExNSWCTiQvgLMamETnZiwDacVMVA8DwfcQmRwpI0ZTkWmFNcAJDFPhRlUdC0GDDFPZWbHSv6N45ceqLAZHghhVYyMSGFRSIutJGFRUyEidaWmsWyvc8Dh9sPjqPTuRjodJFbmy+lyEpWR/ErosIU96ae/pTdR3NeWEdJhmLADtBsf1IbpLBIQDDI42IHnc7FJNUnA3aKHJufAYtRn5LP1DpCplCKZHipncoKiElBpgl51pClKlWWTjbfJ5fQOioGkXWUXEJEmObefrh9QRj1kVRAIjnYgnU+RScDprCQhUw8BBmmSGFhnzOlJDsln5cOsIy5VBwceJ4X5jspLOLADtAdfR70hstuqAlSWCSAaa8TCjNh0NOfWAyYSThV5uhISjMtlGLBNp1zralRWNjn0GYnHhNTGMfS0eeF3e2HjqOy/GKRZTagLMcCALjQoT63UEK76ZYtWzBhwgRYLBYsWrQIBw8eHPbZF154Addffz3y8/ORn5+P6urqQc/fe++94DhuwL8VK1Yk0jVFQPEr4lOYZUZ+2ByditPdBSHglhZKsWCKQyrkF+2WJYVFPITA2xRsdsy6UllgJbesiKg5jiVuheWNN97Axo0b8fjjj+PIkSOYO3culi9fjra2tiGf3717N+6880588MEH2LdvHyorK7Fs2TI0NTUNeG7FihVoaWkR/v3hD39IbEQKgE1myhASl1RueBcppVl0JgnmaC96XF5JP6upJ+SWNRl05JYVkVSmxZ6n0hCSwKzGqUxPF4u4FZZnn30W69evx7p16zBz5kxs3boVVqsVL7300pDP/9d//Rf+5V/+BfPmzcP06dPx29/+FsFgELW1tQOeM5vNKCsrE/7l5+cnNiIFwDJZaKKJSyRTSFqFxeMP4HK4YBVlJ4hHptmAMXkh5UHqWCTW/sQicsuKSXTxOJ6Xtur0BYpfkQQmQ81bWLxeLw4fPozq6upIAzodqqursW/fvpjacLlc8Pl8KCgoGPD67t27UVJSgmnTpuHBBx9EZ2dnPF1TFBfoZCAJqQrabOh0IciH/L3F2WZJPyvdmMTiWCReLM+1OQZ8HiEO4woyoddxcHoDaLV7JP2syDpKhwYxmZRCS7XYxHXJTUdHBwKBAEpLSwe8XlpaijNnzsTUxr/927+hoqJigNKzYsUKfOUrX0FVVRUuXLiA733ve1i5ciX27dsHvX6w79Lj8cDjiUwWu90OAPD5fPD5xI18Zu3F2q7D7UObI9S3yjyz6P0Rm3jHJyfjC0LBYudb++Lqb7xjPNvSCwCoKrLC7/fH2cvUoyYZTiqyYs9nwGc2e8z9TWR8n9nCCkuhVRV/F7XIkANQmZ+Buk4XPrP1oNBaGNP7Ehkfs5JNKMhQ/N8FUI8Mx+eH1tH6Thdcbg+MMVogpRpfPO2l9Fa+H//4x3j99dexe/duWCwW4fU77rhD+P/Zs2djzpw5mDRpEnbv3o2bb755UDtPPfUUNm/ePOj1Xbt2wWqVpuZCTU1NTM/VOwDAgBwjj7+9v0uSvkhBrOOTk043ABhwod2B/31nB/RcfO+PdYw1TRwAPcyeHuzYsSPebsqGGmToag39bfd/egk7+AtxvTee8R36TA+Ag73xM+zYcTa+TsqIGmSYGdQB0OF/dx9E95n43EKxjs8TAFp6Q9vThaMfw3Yy3l7Kh9JlGOQBk04PbxD4/fadKI0zxEvs8blcsd8vFpfCUlRUBL1ej9bW1gGvt7a2oqysbMT3PvPMM/jxj3+M9957D3PmzBnx2YkTJ6KoqAjnz58fUmHZtGkTNm7cKPxst9uFYN6cnJw4RjQ6Pp8PNTU1WLp0KYzG0ct7v3W0GTh5EjPHFmDVqmtE7YsUxDs+OQkGefzkRC08/iDmfG5JzAXB4h3jB388ATS04Atzp2LVkonJdlty1CTDkvpuvHHxE/TyVqxa9cWY3hPv+Hiex/ePfgDAj39c9gVMK1N+HRY1yfC47ixOfVQPS8kErFo1I6b3xDu+k0124OB+FGaacNvqZcl2OSWoSYa/bdiHU80OVM5ciOoZJTG9R6rxMQ9JLMSlsJhMJixYsAC1tbVYs2YNAAgBtBs2bBj2fU8//TT+/d//He+++y4WLlw46uc0Njais7MT5eXlQ/7ebDbDbB4cW2A0GiX7osTadl1X6NruyaXZiv/SRiPl305MJhZn4XSLHXVdbkwuy43rvbGO8bNw0PTMilxV/E0YapDh9PI8AEBzrxveIIdMc+xLUKzja7O74QjX75hSngujQT0psWqQ4cyKPAD1+KzNGXdfY15Hu0Pr6KSSLMX/Pa5EDTKcXJKNU80OXOrql0yG8bQXK3GHz2/cuBEvvPACXnnlFZw+fRoPPvggnE4n1q1bBwBYu3YtNm3aJDz/k5/8BD/4wQ/w0ksvYcKECbDZbLDZbOjrC/kn+/r68Mgjj2D//v2oq6tDbW0tVq9ejcmTJ2P58uXxdk92PmsN+c4nU8CtJEgdeOsLBAXf+Yxyca11BJCfaUJRlgmAdKmxTH7jCzNhVpGyohaYxepsq0OyTCGqcCstU1JcxFEs4o5huf3229He3o7HHnsMNpsN8+bNw86dO4VA3IaGBuh0ET3oV7/6FbxeL/7xH/9xQDuPP/44nnjiCej1ehw/fhyvvPIKenp6UFFRgWXLluGHP/zhkFYUpXO6JaSw0GYnDSxjQKq02LoOJ7yBIDJNeiEFlxCXScVZ6Ojrwrk2B2aPjc9KFgvnqHCjpEwuyYJex6HH5UOr3YOyXMvob4qT8yRDSZleFtqfTrfE7o5RAgkF3W7YsGFYF9Du3bsH/FxXVzdiWxkZGXj33XcT6Ybi6O33oaknZMpkXwhCXKaHT3dnbNJMtNPh7JJpZdnQ6eKM6iViYnJJFg5c6pJM6aTTubRYjHpUFWXifFsfztjskigsZ8LzcLoK4o/UyPTy0N/1QnsfvP5QgUU1oI5eqoSz4Uk2Ji8DuVZl+zDVyszy0In8M1sffIGg6O2fDStC00jhlAxmjmbuU7E5G253CikskjFNODiIL0OH24f6zlDmCFmqpWFMXgayLQb4Aryq6rGQwiIizLxGpwLpGJufgSyzAd5AUJIYiDMtdLKTmpkVIaXz02bxrWQ8z+N0uN2ZFbTZScUMFscigcLC2izLsaAg0yR6+wTAcRxmqNAtRAqLiDA3BZ0KpEOn4zAjbM78NFzgTUzIFC09TH7NvW50O8W9U+hyVz8cHj9Meh25hCRkmoSb3actpHCmAjYPpbCSSQUpLCLyKTudl9NmJyVMIWQBzmJhd1MMUirIthiFGjqfirzhMSV2allWzBU8ifhhCv2FdvFds0wJmkHrqKRMLycLS9oSCPJCOXCysEjLzPDfV2yXApNfea6FYpAkZlb49HyqWVwr2anwd2JWufjZR0QE5pr1BXjRXbNsXtM6Ki1SHfykhBQWkWjocqHfF4DFqMOEQrqsS0pmRJ0MxKwDcSYqQ4iQFqmUzk8pfiUlcBwXFXgrngz9gaAwD2eSwiIpU0uzwHFAR58H7Q5pL7IUC1JYRIKZ1aaVZkNP6bCSMq0sGzoO6HR6hYsmxeCMkCFECovUzAoH3p4SWWERLCyksEiOFJlCdZ1OePxBZBj1GE8HP0mxmgyoCv+NpSoTITaksIjEGSFDiBZKqbEY9ZgYLiglZgwEy06YQTKUHGYBudDeB7cvIEqbnX0e2OxucFzEP09IB8sUOiPiHIyOA6SDn/SweMszKnELkcIiEp8KFW7pdJ4KZogcMBYI8uQ7TyEl2WYUZZkQ5MU7oTPldUJhJrLiuKOISAw2T8S0kkUCbmkOpgK1pTaTwiISQg0WmmgpQewYiEsdfXB6A8gw6oXy/4R0cBwnej0Wil9JLTMrcqDjgDaHB612tyhtCjKkdTQlsP1K7Gw9qSCFRQTaHR409fSD44CrxlB2QiqI1GIRZ6Idbwxlq1w1JgcGSodNCTPLxc0UOkWbXUqxmgyYWhqah2z+JMunZGFJKXPCd3l91uqAy+uXuTejQyuzCBxv7AEQuqGZTNGpYXZYMbzU4YTd7Uu6Pbbgzh6Tl3RbRGywwFixlE7WDgXcpg42D0+E18BkaOntR7vDA31UcUhCWkpzLCjNMSPIAyeblG9lIYVFBP4e3uzmVubJ25E0ojDLjMqCDPA8cPxy8qc7pnTOkeD2YGJoBIWl2Q6vP7niYw63T7gThWUgEdLD5svfRbCwHGvoARDKtLSa6OCXKuaOzQMQWQOVDCksIvD3yz0AgLm02aWUeZX5AIBjl7uTascXCAqn89kkw5RRVZSJPKsRHn8w6bTK44294PlQQbPibLNIPSRGY3bUZpdsTaRj4XV03ri85DpFxAU7aLO/v5IhhSVJeJ4XNFOysKSWeSJNtE+b7XD7gsizGoW6BIT0cByH+WEZHqlPTulk7796XH6y3SLiYGZ5DkwGHbpdPlzqSK7i7VGmsNA6mlKYheXvZGHRPhc7nOh2+WA26KgGS4qJVliSOd0djtrsdFT7IaXMDysYR8LugEQ50tAdbi8vyR4R8WAy6ATL8uEklE5/IIgTYbfSfFJYUsqcylxwXOji0DaRsr2kghSWJPnkUheA0OZpMtCfM5XMqsiBSa9DR58X9Z2uhNs5HN7sFoyn03mquVpQWBLf7HieF07nZGFJPVePT16Gp1sc6PcFkG0xYFIx3bKdSnIsRuGw/UldcpZOqaEdNkmYgK+ZUCBzT9IPi1GPuZWh093BsOIYLzzP43AdKSxyMbcyFzoOaOzuh603sdPdhfY+9IStnJQOm3oWhJXEQ0lsdgcudQIIraNk5Uw910wIyfCTusTW0VRBCkuSHKoPCXjhBNrs5ODaqpCieCBBhaWxux82uxsGHSf4conUkW0xClk9bNOKl/0XQ7JfMD6frJwywCws59r60O30JtQGO3Cw+UykloXhAzfbz5QKze4kaLW7Ud/pAsdFJi2RWq6tKgQAHKxLbLPbdyH0vrmVecgw6UXrFxE7n5sYWiz3X0xUYekMt1MoWp+I2CnKMmNKSciNk4gMg0FeONmTwiIPzMLyabNdlLpWUkEKSxJ8dL4DQKh4Uo7FKHNv0pMF4/OhCweMNfX0x/3+jy+EZHjdJNrs5IIpGsxSEg88zwvvI4VFPtj8+fhC/ArLubY+dLt8yDDqcRXV0JGF8twMTCi0IsgDBxKYh6mCFJYk2HsutNl9fnKRzD1JX7LMBiGdfO+59rjey/M8PgovsItJYZGNhRMKoONCVYvjjWO50N6Hjj4PzAadEM9EpJ7rwmvgR+EDQDz8LTxvF04gl56csH0s3nU0ldC3I0F4nsfesIXlelJYZOWLU4oBAHs+i2+xPN/Wh3ZHaLOj7BL5yM0wCgXI9nwW32K5+2zo+WsmFMBsIJeeXHyuqhAcB1xsd6KlNz5L54dhmd8wtViKrhExcv2U0D72t/PxK52pghSWBPmstQ9tDg8sRh0WUMCtrHwxvNDtPd+BQDD2eizvn2kDEPKbW4y02cnJjdNCMmQyiRWmsNw4vUT0PhGxk2s1CkHrH5yJXens9waEgHlSWORl8aQi6MJKZyLu9VRACkuCvHe6FQCweGIhnexkZu7YXORYDOjt98VVpr/2dGhzrJ5RKlXXiBi5cVpI4dh7viPme4X6PH4hs+gmUlhkp3pGSAbvn2mN+T37L3XC6w+iPNeCySVUf0VOcjOMgqW59nTsMkwlpLAkyLunbACA5bPKZO4JYdDrsCS84b17KraJ1u30Cil8N8+gzU5uZo/JRWGmCX0ef8y1IPaea4cvwGNCoRVVRXSlgtzcHFb8957vgNsXiOk9754MraM3Ti8Bx1H9FblZNiskQ7a/KQ1SWBKguacfxxt7wXGRSUrIy6rZIcXxneMtMZXpf+90K4I8ML0sG2PzrVJ3jxgFnY7D0pmhufSX4y0xvYc9x95HyMv0smyMycuA2xcU4lJGwh8IChvjLbPLpe4eEQPLZobW0f0Xu9DrUl56MyksCbDjRGihXDAun26GVQg3TC1BhlGPprAyORpvH2sGAKyihVIx3Dq3AgDw15Mt8AVGdgu5vH7BpfeluWMk7xsxOhzHCQeH7UebRn3+wKUudLt8KMg0YRHVX1EEE4oyMa00G4Egj52nYjs4pBJSWOKE53n896HLAIA182mhVAoZJr3g2vnTkcYRn7X1uoX0yy+TDBXD5yYWoijLjB6XT0h1HY6aT1vR7wtgQqEVV42hcvxKga2JtafbRj2h/8/h0DxdPqsUBj1tRUqByfDNQyOvo3JA35I4Od7Yi89a+2A26IQTIaEMbr+mEgDwp6NN6PcO70P/nyON4PlQdcfKAnIHKQW9jsOtc0MWr//a3zDis+z3X5o3hmIfFMTM8hxMK82GNxDEn/8+vJWlx+XFX8KW6tuvGZeq7hEx8NWrx0Cv43CovhsX2vvk7s4ASGGJk20f1wEAVlxVhtwMqm6rJD4/qQjjCqxwuP3DLpYefwCvhGVIC6XyuPtz4wEA759tQ12Hc8hnTjb14mBdFww6Dl+/lmSoJDiOwx3Xhg4OL+69NGyZgT8eboTXH8TM8hzMHUsF/5RESY4FS8Ip5mytVAoJKSxbtmzBhAkTYLFYsGjRIhw8eHDE5998801Mnz4dFosFs2fPxo4dOwb8nud5PPbYYygvL0dGRgaqq6tx7ty5RLomKXUdTrx9LLQR3v+FiTL3hrgSnY4TNrwtH1wYMj327aPNaHN4UJpjxpfIQqY4JhZnYcm0YvA88Os9F4d8ZuuHFwAAK2eXoyzXksruETHwtYWVyM0woq7ThV1DZJu4vH5s/TAk27sXjycLmQK57wtVAIDXP7mMNntit6hLQdwKyxtvvIGNGzfi8ccfx5EjRzB37lwsX74cbW1DF3z6+OOPceedd+K+++7D0aNHsWbNGqxZswYnT54Unnn66afx85//HFu3bsWBAweQmZmJ5cuXw+1Wzh8KAP7j3bMI8qEiV7PpVKBI7vrcOBRlmdHQ5cIfDg50KzjcPjyz6ywA4J8/X0VlwBXKvyyZDAB445MGnLHZB/zucH0X/nK8BRwHfOMGOjQokUyzQTg4/HjnmUEpzi9/VIeOPg8qCzLw1avHytFFYhQWTyrEgvH58PqD+Omuz+TujkDcK/azzz6L9evXY926dZg5cya2bt0Kq9WKl156acjnf/azn2HFihV45JFHMGPGDPzwhz/E1VdfjV/84hcAQtaV559/Ht///vexevVqzJkzB6+++iqam5uxffv2pAYnJn/+ewveOdECvY7Dvy6bJnd3iGGwmgz41s2hDe/Hfz2Dc60OAADPAz/acRZtDg+qijJxz3UTZOwlMRLXVhVg1ewyBHngX//773B5/QAAe78Pj/7xOADgawsqMYsuylMs31gyCWU5FtR3uvDjv54RSg0cb+zF8++FNsCNS6fSoUGhcByHR5eH9rk3Dl1WTCG5uL4tXq8Xhw8fRnV1daQBnQ7V1dXYt2/fkO/Zt2/fgOcBYPny5cLzly5dgs1mG/BMbm4uFi1aNGybqYLneVxod+LdRg7/9qeQReihGyfjqjG0UCqZry8ajy9MLkK/L4A7XziAP3xyGb87r8OfjjaD44AfrbmKSvErnP/vlpkoyDThVLMd9247jANtHO5++RAutDtRnmvBIyvo0KBksswGbF49C0Ao7u//e/tT7GnhcN+rR+AL8Fgxqwxr5lGGnpJZNLEQ6z4/AQDw4H8dwW/+dgkdMjs9DPE83NHRgUAggNLSgYWaSktLcebMmSHfY7PZhnzeZrMJv2evDffMlXg8Hng8HuFnuz1kNvb5fPD5xCt2U9fpxIqffwRAD4DHl+aU4xvXjxf1M+SGjUVLYwKAZ746C2tfPozP2vrw2J9Pg+nm/756Jq4dn6up8WpRhiWZBvzq6/Ow7pXDOHq5F0ehB+BAtsWArXfNQ65Zp6nxalGGN00txPdWTsP/++tZvHm4CaF11Ic5Y3Lw76tnwO/3y91FUdGiDP/15klo7HKh5nQb/mPXOQAGLL3RifJ88SpLx/P3ikthUQpPPfUUNm/ePOj1Xbt2wWoVL02V54GyDD1yTTzmF/L4nPUyat69LFr7SqKmpkbuLojO+gnAeyYdLjkAqwH4YlkQma3HsWPHcbm7JglalOEjVwG7GnXocAOlGcCysW7UHd2LuqNy90watCbDUgAPzeTwNxsHdwCYksPjpoou7P1AW+OMRmsyXJUL5FZx+HsnB2+Qw9F9H0LM6edyuWJ+Ni6FpaioCHq9Hq2tA/1Zra2tKCsb+k6dsrKyEZ9n/21tbUV5efmAZ+bNmzdkm5s2bcLGjRuFn+12OyorK7Fs2TLk5IhbROrmai/er30PS5cuhdGovTRmn8+HmpoazY5vDbQ/Rq2P73aNjw/QtgxXAXhIw+NjaFmG/4DQ+N7dJf74mIckFuJSWEwmExYsWIDa2lqsWbMGABAMBlFbW4sNGzYM+Z7FixejtrYWDz/8sPBaTU0NFi9eDACoqqpCWVkZamtrBQXFbrfjwIEDePDBB4ds02w2w2weXBLfaDRK9kWRsm0loPXxAdofI41P/Wh9jFofH6DtMeo48ccXT1txu4Q2btyIe+65BwsXLsS1116L559/Hk6nE+vWrQMArF27FmPGjMFTTz0FAPjWt76FG264AT/96U9xyy234PXXX8ehQ4fwm9/8BkAoGvnhhx/Gj370I0yZMgVVVVX4wQ9+gIqKCkEpIgiCIAgivYlbYbn99tvR3t6Oxx57DDabDfPmzcPOnTuFoNmGhgbodJHko+uuuw6vvfYavv/97+N73/sepkyZgu3bt+Oqq64Snnn00UfhdDrxwAMPoKenB1/4whewc+dOWCxUFIogCIIgiASDbjds2DCsC2j37t2DXrvttttw2223Ddsex3F48skn8eSTTybSHYIgCIIgNA5V7SEIgiAIQvGQwkIQBEEQhOIhhYUgCIIgCMVDCgtBEARBEIqHFBaCIAiCIBQPKSwEQRAEQSgeUlgIgiAIglA8pLAQBEEQBKF4SGEhCIIgCELxkMJCEARBEITiSag0v9LgeR5AfNdUx4rP54PL5YLdbtfkDZxaHx+g/THS+NSP1seo9fEB2h+jVONj+zbbx0dCEwqLw+EAAFRWVsrcE4IgCIIg4sXhcCA3N3fEZzg+FrVG4QSDQTQ3NyM7Oxscx4natt1uR2VlJS5fvoycnBxR21YCWh8foP0x0vjUj9bHqPXxAdofo1Tj43keDocDFRUV0OlGjlLRhIVFp9Nh7Nixkn5GTk6OJr+EDK2PD9D+GGl86kfrY9T6+ADtj1GK8Y1mWWFQ0C1BEARBEIqHFBaCIAiCIBQPKSyjYDab8fjjj8NsNsvdFUnQ+vgA7Y+Rxqd+tD5GrY8P0P4YlTA+TQTdEgRBEAShbcjCQhAEQRCE4iGFhSAIgiAIxUMKC0EQBEEQiocUliuoq6vDfffdh6qqKmRkZGDSpEl4/PHH4fV6R3yf2+3GQw89hMLCQmRlZeGrX/0qWltbU9Tr+Pj3f/93XHfddbBarcjLy4vpPffeey84jhvwb8WKFdJ2NEESGR/P83jsscdQXl6OjIwMVFdX49y5c9J2NAm6urpw1113IScnB3l5ebjvvvvQ19c34nuWLFkySIbf+MY3UtTjkdmyZQsmTJgAi8WCRYsW4eDBgyM+/+abb2L69OmwWCyYPXs2duzYkaKeJk48Y9y2bdsgWVkslhT2Nj727NmDW2+9FRUVFeA4Dtu3bx/1Pbt378bVV18Ns9mMyZMnY9u2bZL3M1HiHd/u3bsHyY/jONhsttR0OE6eeuopXHPNNcjOzkZJSQnWrFmDs2fPjvq+VM9DUliu4MyZMwgGg/j1r3+NU6dO4bnnnsPWrVvxve99b8T3ffvb38b//u//4s0338SHH36I5uZmfOUrX0lRr+PD6/Xitttuw4MPPhjX+1asWIGWlhbh3x/+8AeJepgciYzv6aefxs9//nNs3boVBw4cQGZmJpYvXw632y1hTxPnrrvuwqlTp1BTU4O//OUv2LNnDx544IFR37d+/foBMnz66adT0NuReeONN7Bx40Y8/vjjOHLkCObOnYvly5ejra1tyOc//vhj3Hnnnbjvvvtw9OhRrFmzBmvWrMHJkydT3PPYiXeMQKhAV7Ss6uvrU9jj+HA6nZg7dy62bNkS0/OXLl3CLbfcghtvvBHHjh3Dww8/jPvvvx/vvvuuxD1NjHjHxzh79uwAGZaUlEjUw+T48MMP8dBDD2H//v2oqamBz+fDsmXL4HQ6h32PLPOQJ0bl6aef5quqqob9fU9PD280Gvk333xTeO306dM8AH7fvn2p6GJCvPzyy3xubm5Mz95zzz386tWrJe2P2MQ6vmAwyJeVlfH/8R//IbzW09PDm81m/g9/+IOEPUyMTz/9lAfAf/LJJ8Jrf/3rX3mO4/impqZh33fDDTfw3/rWt1LQw/i49tpr+Yceekj4ORAI8BUVFfxTTz015PNf+9rX+FtuuWXAa4sWLeL/z//5P5L2MxniHWM8c1NpAODfeuutEZ959NFH+VmzZg147fbbb+eXL18uYc/EIZbxffDBBzwAvru7OyV9Epu2tjYeAP/hhx8O+4wc85AsLDHQ29uLgoKCYX9/+PBh+Hw+VFdXC69Nnz4d48aNw759+1LRxZSwe/dulJSUYNq0aXjwwQfR2dkpd5dE4dKlS7DZbAPkl5ubi0WLFilSfvv27UNeXh4WLlwovFZdXQ2dTocDBw6M+N7/+q//QlFREa666ips2rQJLpdL6u6OiNfrxeHDhwf87XU6Haqrq4f92+/bt2/A8wCwfPlyRcoKSGyMANDX14fx48ejsrISq1evxqlTp1LR3ZSgNhkmyrx581BeXo6lS5fio48+krs7MdPb2wsAI+57cshQE3cJScn58+fxn//5n3jmmWeGfcZms8FkMg2KlygtLVWszzJeVqxYga985SuoqqrChQsX8L3vfQ8rV67Evn37oNfr5e5eUjAZlZaWDnhdqfKz2WyDTMsGgwEFBQUj9vfrX/86xo8fj4qKChw/fhz/9m//hrNnz+JPf/qT1F0elo6ODgQCgSH/9mfOnBnyPTabTTWyAhIb47Rp0/DSSy9hzpw56O3txTPPPIPrrrsOp06dkvzetFQwnAztdjv6+/uRkZEhU8/Eoby8HFu3bsXChQvh8Xjw29/+FkuWLMGBAwdw9dVXy929EQkGg3j44Yfx+c9/HlddddWwz8kxD9PGwvLd7353yCCo6H9XLh5NTU1YsWIFbrvtNqxfv16mnsdGIuOLhzvuuANf+tKXMHv2bKxZswZ/+ctf8Mknn2D37t3iDWIEpB6fEpB6jA888ACWL1+O2bNn46677sKrr76Kt956CxcuXBBxFIQYLF68GGvXrsW8efNwww034E9/+hOKi4vx61//Wu6uETEwbdo0/J//83+wYMECXHfddXjppZdw3XXX4bnnnpO7a6Py0EMP4eTJk3j99dfl7sog0sbC8q//+q+49957R3xm4sSJwv83NzfjxhtvxHXXXYff/OY3I76vrKwMXq8XPT09A6wsra2tKCsrS6bbMRPv+JJl4sSJKCoqwvnz53HzzTeL1u5wSDk+JqPW1laUl5cLr7e2tmLevHkJtZkIsY6xrKxsULCm3+9HV1dXXN+3RYsWAQhZESdNmhR3f8WgqKgIer1+UEbdSHOnrKwsruflJpExXonRaMT8+fNx/vx5KbqYcoaTYU5OjuqtK8Nx7bXXYu/evXJ3Y0Q2bNggBPGPZsmTYx6mjcJSXFyM4uLimJ5tamrCjTfeiAULFuDll1+GTjeyIWrBggUwGo2ora3FV7/6VQCh6PCGhgYsXrw46b7HQjzjE4PGxkZ0dnYO2OClRMrxVVVVoaysDLW1tYKCYrfbceDAgbgzqZIh1jEuXrwYPT09OHz4MBYsWAAAeP/99xEMBgUlJBaOHTsGACmT4VCYTCYsWLAAtbW1WLNmDYCQSbq2thYbNmwY8j2LFy9GbW0tHn74YeG1mpqalM21eElkjFcSCARw4sQJrFq1SsKepo7FixcPSoFVsgzF4NixY7LOtZHgeR7f/OY38dZbb2H37t2oqqoa9T2yzEPJwnlVSmNjIz958mT+5ptv5hsbG/mWlhbhX/Qz06ZN4w8cOCC89o1vfIMfN24c//777/OHDh3iFy9ezC9evFiOIYxKfX09f/ToUX7z5s18VlYWf/ToUf7o0aO8w+EQnpk2bRr/pz/9ied5nnc4HPx3vvMdft++ffylS5f49957j7/66qv5KVOm8G63W65hDEu84+N5nv/xj3/M5+Xl8W+//TZ//PhxfvXq1XxVVRXf398vxxBGZcWKFfz8+fP5AwcO8Hv37uWnTJnC33nnncLvr/yOnj9/nn/yySf5Q4cO8ZcuXeLffvttfuLEifwXv/hFuYYg8Prrr/Nms5nftm0b/+mnn/IPPPAAn5eXx9tsNp7nef7uu+/mv/vd7wrPf/TRR7zBYOCfeeYZ/vTp0/zjjz/OG41G/sSJE3INYVTiHePmzZv5d999l79w4QJ/+PBh/o477uAtFgt/6tQpuYYwIg6HQ5hnAPhnn32WP3r0KF9fX8/zPM9/97vf5e+++27h+YsXL/JWq5V/5JFH+NOnT/Nbtmzh9Xo9v3PnTrmGMCLxju+5557jt2/fzp87d44/ceIE/61vfYvX6XT8e++9J9cQRuTBBx/kc3Nz+d27dw/Y81wul/CMEuYhKSxX8PLLL/MAhvzHuHTpEg+A/+CDD4TX+vv7+X/5l3/h8/PzeavVyn/5y18eoOQoiXvuuWfI8UWPBwD/8ssv8zzP8y6Xi1+2bBlfXFzMG41Gfvz48fz69euFxVZpxDs+ng+lNv/gBz/gS0tLebPZzN9888382bNnU9/5GOns7OTvvPNOPisri8/JyeHXrVs3QCG78jva0NDAf/GLX+QLCgp4s9nMT548mX/kkUf43t5emUYwkP/8z//kx40bx5tMJv7aa6/l9+/fL/zuhhtu4O+5554Bz//3f/83P3XqVN5kMvGzZs3i33nnnRT3OH7iGePDDz8sPFtaWsqvWrWKP3LkiAy9jg2WxnvlPzame+65h7/hhhsGvWfevHm8yWTiJ06cOGA+Ko14x/eTn/yEnzRpEm+xWPiCggJ+yZIl/Pvvvy9P52NguD0vWiZKmId0WzNBEARBEIonbbKECIIgCIJQL6SwEARBEASheEhhIQiCIAhC8ZDCQhAEQRCE4iGFhSAIgiAIxUMKC0EQBEEQiocUFoIgCIIgFA8pLARBEARBKB5SWAiCSIonnnhCkksit23bNuAyUSUzYcIEPP/883J3gyA0DSksBEEkxXe+8x3U1tYm/P7m5mYYjUZ0dXWJ2KsIHMdh+/btkrTN+OSTT/DAAw9I+hkEke6QwkIQRFJkZWWhsLAw4fdXVFRg/vz5eOedd0TsVWopLi6G1WqVuxsEoWlIYSGINOfVV19FYWEhPB7PgNfXrFmDu+++e9T3i+ES+tKXvoQ///nPQ/7u3XffxYwZM5CVlYUVK1agpaVF+N0nn3yCpUuXoqioCLm5ubjhhhtw5MgR4fcTJkwAAHz5y18Gx3HCz1dy0003YcOGDQNea29vh8lkisl6RC4hgpAeUlgIIs257bbbEAgEBigMbW1teOedd/DP//zPKenD6tWr8e6778Lr9Q543eVy4ZlnnsHvfvc77NmzBw0NDfjOd74j/N7hcOCee+7B3r17sX//fkyZMgWrVq2Cw+EAEFJoAODll19GS0uL8POV3H///XjttdcGKG2///3vMWbMGNx0001iD5cgiAQghYUg0pyMjAx8/etfx8svvyy89vvf/x7jxo3DkiVLUtKH2bNno6ioCO+///6A130+H7Zu3YqFCxfi6quvxoYNGwZYPG666Sb80z/9E6ZPn44ZM2bgN7/5DVwuFz788EMAIVcNAOTl5aGsrEz4+Uq+8pWvAADefvtt4bVt27bh3nvvBcdxoo6VIIjEIIWFIAisX78eu3btQlNTEwBxN+tZs2YhKysLWVlZWLly5bDPDeUWslqtmDRpkvBzeXk52trahJ9bW1uxfv16TJkyBbm5ucjJyUFfXx8aGhri6qPFYsHdd9+Nl156CQBw5MgRnDx5Evfee29c7RAEIR0GuTtAEIT8zJ8/H3PnzsWrr76KZcuW4dSpU6IFwe7YsQM+nw9AyJozHKtXr8batWvxy1/+UnjNaDQOeIbjOPA8L/x8zz33oLOzEz/72c8wfvx4mM1mLF68eJBrKRbuv/9+zJs3D42NjXj55Zdx0003Yfz48XG3QxCENJDCQhAEgNCG/fzzz6OpqQnV1dWorKwUpd1YN/3rr78eTqcTR44cwdVXXx3Tez766CP88pe/xKpVqwAAly9fRkdHx4BnjEYjAoHAqG3Nnj0bCxcuxAsvvIDXXnsNv/jFL2LqA0EQqYFcQgRBAAC+/vWvo7GxES+88ELKgm2jMRgMWLVq1YA4ktGYMmUKfve73+H06dM4cOAA7rrrrkFWnAkTJqC2thY2mw3d3d0jtnf//ffjxz/+MXiex5e//OWExkEQhDSQwkIQBAAgNzcXX/3qV5GVlYU1a9bI0ofVq1cPm948FC+++CK6u7tx9dVX4+6778b//b//FyUlJQOe+elPf4qamhpUVlZi/vz5I7Z35513wmAw4M4774TFYkloDARBSAPHRzuECYJIa26++WbMmjULP//5z2X5fIfDgeLiYpw7d040l1Q81NXVYdKkSfjkk09idksRBJEayMJCEAS6u7vx1ltvYffu3XjooYdk60d2djZ+/vOfo7e3N6Wf6/P5YLPZ8P3vfx+f+9znSFkhCAVCQbcEQWD+/Pno7u7GT37yE0ybNm3A72bNmoX6+voh3/frX/8ad911l6h9keNOno8++gg33ngjpk6dij/+8Y8Dfve3v/1txHTsvr4+qbtHEATIJUQQxCjU19cLaclXUlpaiuzs7BT3KLX09/cL9WmGYvLkySnsDUGkL6SwEARBEASheCiGhSAIgiAIxUMKC0EQBEEQiocUFoIgCIIgFA8pLARBEARBKB5SWAiCIAiCUDyksBAEQRAEoXhIYSEIgiAIQvGQwkIQBEEQhOL5/wEboxN51z31FQAAAABJRU5ErkJggg==",
"text/plain": [
"